論文の概要: Segment Anything in Pathology Images with Natural Language
- arxiv url: http://arxiv.org/abs/2506.20988v1
- Date: Thu, 26 Jun 2025 04:01:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-27 19:53:09.968217
- Title: Segment Anything in Pathology Images with Natural Language
- Title(参考訳): 自然言語を用いた病理画像のセグメンテーション
- Authors: Zhixuan Chen, Junlin Hou, Liqi Lin, Yihui Wang, Yequan Bie, Xi Wang, Yanning Zhou, Ronald Cheong Kin Chan, Hao Chen,
- Abstract要約: PathSegmentorは、病理画像に特化して設計された最初のテキストプロンプトセグメンテーション基盤モデルである。
PathSegは、病理分類のための最大かつ最も包括的なデータセットである。
- 参考スコア(独自算出の注目度): 10.525414795571393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pathology image segmentation is crucial in computational pathology for analyzing histological features relevant to cancer diagnosis and prognosis. However, current methods face major challenges in clinical applications due to limited annotated data and restricted category definitions. To address these limitations, we propose PathSegmentor, the first text-prompted segmentation foundation model designed specifically for pathology images. We also introduce PathSeg , the largest and most comprehensive dataset for pathology segmentation, built from 17 public sources and containing 275k image-mask-label triples across 160 diverse categories. With PathSegmentor, users can perform semantic segmentation using natural language prompts, eliminating the need for laborious spatial inputs such as points or boxes. Extensive experiments demonstrate that PathSegmentor outperforms specialized models with higher accuracy and broader applicability, while maintaining a compact architecture. It significantly surpasses existing spatial- and text-prompted models by 0.145 and 0.429 in overall Dice scores, respectively, showing strong robustness in segmenting complex structures and generalizing to external datasets. Moreover, PathSegmentor's outputs enhance the interpretability of diagnostic models through feature importance estimation and imaging biomarker discovery, offering pathologists evidence-based support for clinical decision-making. This work advances the development of explainable AI in precision oncology.
- Abstract(参考訳): 病理像のセグメンテーションは、癌診断と予後に関連する組織学的特徴を分析するために、計算病理学において重要である。
しかし,本手法は,注釈付きデータや制限されたカテゴリ定義によって臨床応用の大きな課題に直面している。
これらの制約に対処するために,病理画像に特化して設計された最初のテキストプロンプトセグメンテーション基盤モデルであるPathSegmentorを提案する。
また、パスセグは、病理分類のための最大かつ最も包括的なデータセットであり、17の公開ソースから構築され、160のさまざまなカテゴリに275万のイメージマスクラベルのトリプルを含んでいる。
PathSegmentorを使えば、ユーザは自然言語のプロンプトを使ってセマンティックセグメンテーションを実行できる。
大規模な実験により、PathSegmentorは、コンパクトなアーキテクチャを維持しながら、高い精度とより広い適用性で、特別なモデルより優れていることが示された。
これはDiceのスコア全体の0.145と0.429で既存の空間的およびテキストプロンプトモデルを大幅に上回り、複雑な構造のセグメント化と外部データセットへの一般化において強い堅牢性を示している。
さらに、PathSegmentorのアウトプットは、特徴的重要性の推定とバイオマーカーの発見を通じて、診断モデルの解釈可能性を高める。
この研究は、精密腫瘍学における説明可能なAIの開発を進める。
関連論文リスト
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
そこで我々は,Latent Diffusion Models (LDMs) を事前学習した特徴抽出器として活用する,病理組織像分割の新しい手法であるPathSegDiffを提案する。
本手法は,H&E染色組織像から多彩な意味情報を抽出するために,自己教師型エンコーダによって誘導される病理特異的LCMを用いる。
本実験は,BCSSおよびGlaSデータセットにおける従来の手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2025-04-09T14:58:21Z) - Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challengeは、23の臨床的に関連する大動脈枝と領域に注釈付き100 CTA巻の最初のデータセットを導入した。
本稿では,トップパフォーマンスアルゴリズムの課題設計,データセットの詳細,評価指標,詳細な分析について述べる。
論文 参考訳(メタデータ) (2025-02-07T21:09:05Z) - Pitfalls of topology-aware image segmentation [81.19923502845441]
我々は、不適切な接続選択、見過ごされたトポロジカルアーティファクト、評価指標の不適切な使用を含むモデル評価における致命的な落とし穴を同定する。
本稿では,トポロジを意識した医用画像分割手法の公正かつ堅牢な評価基準を確立するための,行動可能なレコメンデーションセットを提案する。
論文 参考訳(メタデータ) (2024-12-19T08:11:42Z) - MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
MedCLIP-SAMv2はCLIPとSAMモデルを統合して臨床スキャンのセグメンテーションを行う新しいフレームワークである。
提案手法は,DHN-NCE(Decoupled Hard Negative Noise Contrastive Estimation)によるBiomedCLIPモデルの微調整を含む。
また,ゼロショットセグメンテーションラベルを弱教師付きパラダイム内で使用することにより,セグメンテーション品質をさらに向上する。
論文 参考訳(メタデータ) (2024-09-28T23:10:37Z) - Scribble-Based Interactive Segmentation of Medical Hyperspectral Images [4.675955891956077]
本研究は、医用ハイパースペクトル画像のためのスクリブルベースのインタラクティブセグメンテーションフレームワークを導入する。
提案手法は,特徴抽出のための深層学習と,ユーザが提供するスクリブルから生成された測地距離マップを利用する。
論文 参考訳(メタデータ) (2024-08-05T12:33:07Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
本研究では, 解剖学的特徴と病理学的情報を組み合わせた汎用的セグメンテーションモデルを構築し, 病理学的特徴のセグメンテーション精度を高めることを目的とする。
我々の解剖学・病理学交流(APEx)訓練では,ヒト解剖学の問合せ表現に結合特徴空間をデコードする問合せベースのセグメンテーション変換器を用いている。
これにより、FDG-PET-CTとChest X-Rayの病理分類タスクにおいて、強力なベースライン法に比べて最大3.3%のマージンで、ボード全体で最高の結果を報告できる。
論文 参考訳(メタデータ) (2024-07-08T11:44:15Z) - Spatially Dependent U-Nets: Highly Accurate Architectures for Medical
Imaging Segmentation [10.77039660100327]
解剖学的構造に固有の空間的コヒーレンスを利用する新しいディープニューラルネットワークアーキテクチャを紹介します。
提案手法は,分割画素/ボクセル空間における長距離空間依存性を捉えるのに有効である。
本手法は一般的に使用されるU-NetおよびU-Net++アーキテクチャに好適に作用する。
論文 参考訳(メタデータ) (2021-03-22T10:37:20Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。