論文の概要: Quantum Machine Learning in Transportation: A Case Study of Pedestrian Stress Modelling
- arxiv url: http://arxiv.org/abs/2507.01235v1
- Date: Tue, 01 Jul 2025 23:18:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.959522
- Title: Quantum Machine Learning in Transportation: A Case Study of Pedestrian Stress Modelling
- Title(参考訳): 輸送における量子機械学習 : 歩行者ストレスモデリングを事例として
- Authors: Bara Rababa, Bilal Farooq,
- Abstract要約: 仮想道路横断実験において,歩行者のストレスを反映した皮膚コンダクタンス応答(SCR)イベントをモデル化するための量子機械学習について検討する。
データセットはSCR測定と応答振幅と経過時間などの特徴から構成されており、振幅に基づくクラスに分類されている。
QNNモデルは55%という高いテスト精度に達し、QSVMや従来のバージョンよりも優れた分類モデルとなった。
- 参考スコア(独自算出の注目度): 4.378407481656902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing has opened new opportunities to tackle complex machine learning tasks, for instance, high-dimensional data representations commonly required in intelligent transportation systems. We explore quantum machine learning to model complex skin conductance response (SCR) events that reflect pedestrian stress in a virtual reality road crossing experiment. For this purpose, Quantum Support Vector Machine (QSVM) with an eight-qubit ZZ feature map and a Quantum Neural Network (QNN) using a Tree Tensor Network ansatz and an eight-qubit ZZ feature map, were developed on Pennylane. The dataset consists of SCR measurements along with features such as the response amplitude and elapsed time, which have been categorized into amplitude-based classes. The QSVM achieved good training accuracy, but had an overfitting problem, showing a low test accuracy of 45% and therefore impacting the reliability of the classification model. The QNN model reached a higher test accuracy of 55%, making it a better classification model than the QSVM and the classic versions.
- Abstract(参考訳): 量子コンピューティングは、例えばインテリジェントトランスポートシステムで一般的に必要とされる高次元データ表現など、複雑な機械学習タスクに取り組む新たな機会を開いた。
仮想道路横断実験において,歩行者のストレスを反映した複雑な皮膚コンダクタンス応答(SCR)イベントをモデル化するための量子機械学習について検討する。
この目的のために、Pennylane上で8ビットZZ特徴マップと8ビットZZ特徴マップを用いた量子サポートベクトルマシン(QSVM)と、ツリーテンソルネットワークアンサッツと8ビットZZ特徴マップを用いた量子ニューラルネットワーク(QNN)を開発した。
データセットはSCR測定と応答振幅と経過時間などの特徴から構成されており、振幅に基づくクラスに分類されている。
QSVMは優れたトレーニング精度を達成したが、オーバーフィッティングの問題があり、テストの精度は45%低く、したがって分類モデルの信頼性に影響を及ぼした。
QNNモデルは55%という高いテスト精度に達し、QSVMや従来のバージョンよりも優れた分類モデルとなった。
関連論文リスト
- Lean classical-quantum hybrid neural network model for image classification [12.353900068459446]
本稿では,変分回路の4層のみを用いて,効率的な分類性能を実現するLan Classical-Quantum Hybrid Neural Network (LCQHNN)を提案する。
我々の実験は、LCQHNNがMNIST、FashionMNIST、CIFAR-10データセットの100%、99.02%、85.55%の分類精度を達成することを示した。
論文 参考訳(メタデータ) (2024-12-03T00:37:11Z) - Benchmarking Quantum Convolutional Neural Networks for Classification and Data Compression Tasks [0.4379805041989628]
量子畳み込みニューラルネットワーク(QCNN)は、量子機械学習タスクの有望なモデルとして登場した。
本稿では,量子基底状態の位相を分類するハードウェア効率アンサッツ(HEA)と比較してQCNNの性能について検討する。
論文 参考訳(メタデータ) (2024-11-20T17:17:09Z) - Quantum Active Learning [3.3202982522589934]
量子ニューラルネットワークのトレーニングは通常、教師付き学習のための実質的なラベル付きトレーニングセットを必要とする。
QALはモデルを効果的にトレーニングし、完全にラベル付けされたデータセットに匹敵するパフォーマンスを達成する。
我々は,QALがランダムサンプリングベースラインに乗じて負の結果を微妙な数値実験により解明する。
論文 参考訳(メタデータ) (2024-05-28T14:39:54Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - Quantum support vector machines for classification and regression on a trapped-ion quantum computer [9.736685719039599]
量子支援ベクトル分類(QSVC)と量子支援ベクトル回帰(QSVR)に基づく量子機械学習モデルについて検討する。
本稿では,これらのモデルについて,ノイズと非ノイズの双方を考慮した量子回路シミュレータとIonQ Harmony量子プロセッサを用いて検討する。
分類タスクでは, 捕捉イオン量子コンピュータの4量子ビットを用いたQSVCモデルの性能は, ノイズレス量子回路シミュレーションで得られたものと同等であった。
論文 参考訳(メタデータ) (2023-07-05T08:06:41Z) - Weight Re-Mapping for Variational Quantum Algorithms [54.854986762287126]
変動量子回路(VQC)における重み付けの考え方を紹介する。
我々は,8つの分類データセットに対する影響を評価するために,7つの異なる重み再マッピング関数を用いる。
以上の結果から,重量再マッピングによりVQCの収束速度が向上することが示唆された。
論文 参考訳(メタデータ) (2023-06-09T09:42:21Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Quantum-inspired Machine Learning on high-energy physics data [0.0]
CERNの大型ハドロン衝突型加速器が生成するデータの分析と分類に量子インスパイアされた機械学習技術を適用した。
特に、いわゆるb-ジェットを効果的に分類する方法、陽子-陽子実験からb-クォークを起源とするジェット、および分類結果の解釈方法について述べる。
論文 参考訳(メタデータ) (2020-04-28T18:00:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。