論文の概要: Estimating Dataset Dimension via Singular Metrics under the Manifold Hypothesis: Application to Inverse Problems
- arxiv url: http://arxiv.org/abs/2507.07291v1
- Date: Wed, 09 Jul 2025 21:22:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.208212
- Title: Estimating Dataset Dimension via Singular Metrics under the Manifold Hypothesis: Application to Inverse Problems
- Title(参考訳): マニフォールド仮説に基づくSingular Metricsによるデータセット次元の推定:逆問題への応用
- Authors: Paola Causin, Alessio Marta,
- Abstract要約: 多様体の内在次元を推定し、適切な局所座標を構築し、周囲空間と多様体空間の間の写像を学習する3つの重要な課題に対処する枠組みを提案する。
本稿では,VAEデコーダのプルバック値の数値ランクを解析することにより,データセットのIDを推定することに集中する。
推定IDは、可逆なVAEの混合を用いた局所チャートのアトラスの構築をガイドし、正確な多様体パラメータ化と効率的な推論を可能にする。
- 参考スコア(独自算出の注目度): 0.6138671548064356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-dimensional datasets often exhibit low-dimensional geometric structures, as suggested by the manifold hypothesis, which implies that data lie on a smooth manifold embedded in a higher-dimensional ambient space. While this insight underpins many advances in machine learning and inverse problems, fully leveraging it requires to deal with three key tasks: estimating the intrinsic dimension (ID) of the manifold, constructing appropriate local coordinates, and learning mappings between ambient and manifold spaces. In this work, we propose a framework that addresses all these challenges using a Mixture of Variational Autoencoders (VAEs) and tools from Riemannian geometry. We specifically focus on estimating the ID of datasets by analyzing the numerical rank of the VAE decoder pullback metric. The estimated ID guides the construction of an atlas of local charts using a mixture of invertible VAEs, enabling accurate manifold parameterization and efficient inference. We how this approach enhances solutions to ill-posed inverse problems, particularly in biomedical imaging, by enforcing that reconstructions lie on the learned manifold. Lastly, we explore the impact of network pruning on manifold geometry and reconstruction quality, showing that the intrinsic dimension serves as an effective proxy for monitoring model capacity.
- Abstract(参考訳): 高次元のデータセットは、高次元の周囲空間に埋め込まれた滑らかな多様体上のデータを意味する多様体仮説によって示唆されるように、しばしば低次元の幾何学構造を示す。
この洞察は機械学習と逆問題における多くの進歩を支えているが、完全に活用するためには、多様体の内在次元(ID)の推定、適切な局所座標の構築、周囲空間と多様体空間の間の写像の学習という3つの重要なタスクを扱う必要がある。
本研究では,変分オートエンコーダ(VAE)とリーマン幾何学のツールを用いて,これらの課題に対処するフレームワークを提案する。
本稿では,VAEデコーダのプルバック値の数値ランクを解析することにより,データセットのIDを推定することに集中する。
推定IDは、可逆なVAEの混合を用いた局所チャートのアトラスの構築をガイドし、正確な多様体パラメータ化と効率的な推論を可能にする。
このアプローチは、特に生体医用画像において、学習多様体上の再構成を強制することにより、不適切な逆問題に対する解をいかに向上させるかを示す。
最後に,ネットワークプルーニングが多様体形状および再構成品質に与える影響について検討し,本質的な次元がモデルキャパシティのモニタリングに有効であることを示す。
関連論文リスト
- Score-based Pullback Riemannian Geometry: Extracting the Data Manifold Geometry using Anisotropic Flows [10.649159213723106]
本稿では,データ駆動型リーマン幾何学のフレームワークを提案する。
提案手法は,データサポートを通した高品質な測地線を生成する。
これは、データ多様体の完全な幾何学を抽出する最初のスケーラブルなフレームワークである。
論文 参考訳(メタデータ) (2024-10-02T18:52:12Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Geometry-Contrastive Transformer for Generalized 3D Pose Transfer [95.56457218144983]
この研究の直感は、与えられたメッシュ間の幾何学的不整合を強力な自己認識機構で知覚することである。
本研究では,グローバルな幾何学的不整合に対する3次元構造的知覚能力を有する新しい幾何学コントラスト変換器を提案する。
本稿では, クロスデータセット3次元ポーズ伝達タスクのための半合成データセットとともに, 潜時等尺正則化モジュールを提案する。
論文 参考訳(メタデータ) (2021-12-14T13:14:24Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
ほとんどの既存の多様体学習アルゴリズムは、元のデータを低次元座標で置き換える。
本稿では,これらの問題に対処するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-10-14T15:50:38Z) - Manifold Topology Divergence: a Framework for Comparing Data Manifolds [109.0784952256104]
本研究では,深部生成モデルの評価を目的としたデータ多様体の比較フレームワークを開発する。
クロスバーコードに基づき,manifold Topology Divergence score(MTop-Divergence)を導入する。
MTop-Divergenceは,様々なモードドロップ,モード内崩壊,モード発明,画像乱れを正確に検出する。
論文 参考訳(メタデータ) (2021-06-08T00:30:43Z) - Augmented Parallel-Pyramid Net for Attention Guided Pose-Estimation [90.28365183660438]
本稿では、注意部分モジュールと微分可能な自動データ拡張を備えた拡張並列ピラミドネットを提案する。
我々は、データ拡張のシーケンスをトレーニング可能なCNNコンポーネントとして定式化する新しいポーズ検索空間を定義する。
特に,本手法は,挑戦的なCOCOキーポイントベンチマークとMPIIデータセットの最先端結果において,トップ1の精度を実現する。
論文 参考訳(メタデータ) (2020-03-17T03:52:17Z) - Learning Flat Latent Manifolds with VAEs [16.725880610265378]
本稿では、ユークリッド計量がデータポイント間の類似性のプロキシとなる変分自動エンコーダのフレームワークの拡張を提案する。
我々は、変分オートエンコーダで一般的に使用されるコンパクトな以前のものを、最近発表されたより表現力のある階層型に置き換える。
提案手法は,ビデオ追跡ベンチマークを含む,さまざまなデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-12T09:54:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。