論文の概要: Benchmarking Waitlist Mortality Prediction in Heart Transplantation Through Time-to-Event Modeling using New Longitudinal UNOS Dataset
- arxiv url: http://arxiv.org/abs/2507.07339v1
- Date: Wed, 09 Jul 2025 23:51:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.231985
- Title: Benchmarking Waitlist Mortality Prediction in Heart Transplantation Through Time-to-Event Modeling using New Longitudinal UNOS Dataset
- Title(参考訳): 経時的UNOSデータセットを用いた心移植における平均ウェイトリスト死亡率予測
- Authors: Yingtao Luo, Reza Skandari, Carlos Martinez, Arman Kilic, Rema Padman,
- Abstract要約: 23,807人の患者を77変数で訓練し,生存予測と識別を1年間の地平線で評価した。
主要な予測者は、既知のリスク要因と整合し、新しい関連を明らかにする。
心移植決定における緊急評価と政策改善を支援することができる。
- 参考スコア(独自算出の注目度): 1.7372615815088566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decisions about managing patients on the heart transplant waitlist are currently made by committees of doctors who consider multiple factors, but the process remains largely ad-hoc. With the growing volume of longitudinal patient, donor, and organ data collected by the United Network for Organ Sharing (UNOS) since 2018, there is increasing interest in analytical approaches to support clinical decision-making at the time of organ availability. In this study, we benchmark machine learning models that leverage longitudinal waitlist history data for time-dependent, time-to-event modeling of waitlist mortality. We train on 23,807 patient records with 77 variables and evaluate both survival prediction and discrimination at a 1-year horizon. Our best model achieves a C-Index of 0.94 and AUROC of 0.89, significantly outperforming previous models. Key predictors align with known risk factors while also revealing novel associations. Our findings can support urgency assessment and policy refinement in heart transplant decision making.
- Abstract(参考訳): 心臓移植のウェイトリストにおける患者の管理に関する決定は、現在、複数の要因を考慮に入れている医師の委員会によって下されている。
2018年以降、United Network for Organ Sharing(UNOS)が収集した長期患者、ドナー、臓器データの増加に伴い、臓器提供時の臨床的意思決定を支援するための分析的アプローチへの関心が高まっている。
本研究では、時系列の待ちリスト履歴データを利用した機械学習モデルを用いて、待ちリストの死亡率の時間-時間-時間モデリングを行う。
23,807人の患者を77変数で訓練し,生存予測と識別を1年間の地平線で評価した。
我々の最良のモデルでは、C-Indexの0.94とAUROCの0.89が達成され、従来のモデルよりも大幅に優れていた。
主要な予測者は、既知のリスク要因と整合し、新しい関連を明らかにする。
心移植決定における緊急評価と政策改善を支援することができる。
関連論文リスト
- Congenital Heart Disease Classification Using Phonocardiograms: A Scalable Screening Tool for Diverse Environments [34.10187730651477]
先天性心疾患(CHD)は早期発見を必要とする重要な疾患である。
本研究では, 心電図(PCG)信号を用いたCHD検出のための深層学習モデルを提案する。
バングラデシュの一次データセットを含むいくつかのデータセットで、我々のモデルを評価した。
論文 参考訳(メタデータ) (2025-03-28T05:47:44Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Enhancing clinical decision support with physiological waveforms -- a multimodal benchmark in emergency care [0.9503773054285559]
本稿では,救急医療におけるマルチモーダル意思決定支援を推進すべく,データセットとベンチマークプロトコルを提案する。
本モデルでは, 人口統計, バイオメトリックス, バイタルサイン, 検査値, 心電図(ECG)波形を入力として, 放電診断と患者の劣化の双方を予測する。
論文 参考訳(メタデータ) (2024-07-25T08:21:46Z) - Conditional Score-Based Diffusion Model for Cortical Thickness
Trajectory Prediction [29.415616701032604]
アルツハイマー病(英: Alzheimer's Disease、AD)は、個人間での進行率の多様性を特徴とする神経変性疾患である。
与えられたベースライン情報を用いてCThトラジェクトリを生成する条件付きスコアベース拡散モデルを提案する。
本モデルでは6~36ヶ月のCThに比べて95%間隔が狭いほぼゼロバイアスを有する。
論文 参考訳(メタデータ) (2024-03-11T17:26:18Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
我々はUCADI(Unified CT-COVID AI Diagnostic Initiative)を立ち上げ、各ホスト機関でAIモデルを分散的にトレーニングし、独立して実行することができる。
本研究は,中国とイギリスに所在する23の病院で採取した3,336例の胸部CT9,573例について検討した。
論文 参考訳(メタデータ) (2021-11-18T00:43:41Z) - Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
Model of COVID-19 Hospital Trajectories [55.786207368853084]
新型コロナウイルス(COVID-19)のパンデミックの中、病院の資源をモデル化する問題に取り組んでいます。
幅広い適用性のために、関心のある領域の患者レベルデータが利用できない、一般的なが困難なシナリオに注目します。
本稿では,ACED-HMM(ACED-HMM)と呼ばれる集合数正規化隠れマルコフモデルを提案する。
論文 参考訳(メタデータ) (2021-04-28T15:32:42Z) - Learning $\mathbf{\mathit{Matching}}$ Representations for Individualized
Organ Transplantation Allocation [98.43063331640538]
臓器アロケーションと移植結果の観察データを用いて,臓器マッチングのためのデータ駆動型ルールの学習問題を定式化する。
本稿では,表現学習に基づくモデルを提案し,ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ド
本モデルは,ヒトの専門家が実施する最先端のアロケーション手法やポリシーより優れる。
論文 参考訳(メタデータ) (2021-01-28T01:33:21Z) - An explainable Transformer-based deep learning model for the prediction
of incident heart failure [22.513476932615845]
100,071例の心不全予後予測のための新しいTransformerディープラーニングモデルを開発した。
このモデルは、レシーバーオペレーター曲線で 0.93 と 0.93 の領域、精度-リコール曲線で 0.69 と 0.70 の領域を達成した。
文脈化医療情報の重要さは感度分析において明らかにされた。
論文 参考訳(メタデータ) (2021-01-27T12:45:15Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
既存の結果予測モデルは、頻繁なポジティブな結果の低いリコールに悩まされる。
我々は、死亡率とICUの受け入れによって表される逆さを自動的に予測する、高度にスケーリング可能な、堅牢な機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-18T15:56:28Z) - Predicting special care during the COVID-19 pandemic: A machine learning
approach [0.0]
本稿では,患者が特別なケアを必要としているかどうかを予測するため,統計と機械学習に基づく分析手法を提案する。
また、患者がそのようなケアを受ける日数も予測する。
分析的アプローチは、他の疾患で使用することができ、病院の容量を計画するのに役立つ。
論文 参考訳(メタデータ) (2020-11-06T00:18:27Z) - Gradient Boosting on Decision Trees for Mortality Prediction in
Transcatheter Aortic Valve Implantation [5.050648346154715]
心臓外科における現在の予後リスクスコアは統計に基づいており、まだ機械学習の恩恵を受けていない。
本研究は,TAVI後の患者の1年間の死亡率を予測する機械学習モデルの構築を目的とする。
論文 参考訳(メタデータ) (2020-01-08T10:04:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。