Lightweight Deep Learning-Based Channel Estimation for RIS-Aided Extremely Large-Scale MIMO Systems on Resource-Limited Edge Devices
- URL: http://arxiv.org/abs/2507.09627v1
- Date: Sun, 13 Jul 2025 13:42:42 GMT
- Title: Lightweight Deep Learning-Based Channel Estimation for RIS-Aided Extremely Large-Scale MIMO Systems on Resource-Limited Edge Devices
- Authors: Muhammad Kamran Saeed, Ashfaq Khokhar, Shakil Ahmed,
- Abstract summary: We propose a lightweight deep learning framework for efficient cascaded channel estimation in XL-MIMO systems.<n>Our framework significantly improves estimation accuracy and reduces computational complexity, regardless of the increasing number of antennas and RIS elements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Next-generation wireless technologies such as 6G aim to meet demanding requirements such as ultra-high data rates, low latency, and enhanced connectivity. Extremely Large-Scale MIMO (XL-MIMO) and Reconfigurable Intelligent Surface (RIS) are key enablers, with XL-MIMO boosting spectral and energy efficiency through numerous antennas, and RIS offering dynamic control over the wireless environment via passive reflective elements. However, realizing their full potential depends on accurate Channel State Information (CSI). Recent advances in deep learning have facilitated efficient cascaded channel estimation. However, the scalability and practical deployment of existing estimation models in XL-MIMO systems remain limited. The growing number of antennas and RIS elements introduces a significant barrier to real-time and efficient channel estimation, drastically increasing data volume, escalating computational complexity, requiring advanced hardware, and resulting in substantial energy consumption. To address these challenges, we propose a lightweight deep learning framework for efficient cascaded channel estimation in XL-MIMO systems, designed to minimize computational complexity and make it suitable for deployment on resource-constrained edge devices. Using spatial correlations in the channel, we introduce a patch-based training mechanism that reduces the dimensionality of input to patch-level representations while preserving essential information, allowing scalable training for large-scale systems. Simulation results under diverse conditions demonstrate that our framework significantly improves estimation accuracy and reduces computational complexity, regardless of the increasing number of antennas and RIS elements in XL-MIMO systems.
Related papers
- Large-Scale Model Enabled Semantic Communication Based on Robust Knowledge Distillation [53.16213723669751]
Large-scale models (LSMs) can be an effective framework for semantic representation and understanding.<n>However, their direct deployment is often hindered by high computational complexity and resource requirements.<n>This paper proposes a novel knowledge distillation based semantic communication framework.
arXiv Detail & Related papers (2025-08-04T07:47:18Z) - A Lightweight Deep Learning Model for Automatic Modulation Classification using Dual Path Deep Residual Shrinkage Network [0.0]
Automatic Modulation Classification (AMC) plays a key role in enhancing spectrum efficiency.<n>There is a pressing need for lightweight AMC models that balance low complexity with high classification accuracy.<n>This paper proposes a low-complexity, lightweight deep learning (DL) AMC model optimized for resource-constrained edge devices.
arXiv Detail & Related papers (2025-07-07T00:37:54Z) - Resource-Efficient Beam Prediction in mmWave Communications with Multimodal Realistic Simulation Framework [57.994965436344195]
Beamforming is a key technology in millimeter-wave (mmWave) communications that improves signal transmission by optimizing directionality and intensity.<n> multimodal sensing-aided beam prediction has gained significant attention, using various sensing data to predict user locations or network conditions.<n>Despite its promising potential, the adoption of multimodal sensing-aided beam prediction is hindered by high computational complexity, high costs, and limited datasets.
arXiv Detail & Related papers (2025-04-07T15:38:25Z) - Machine Learning-Based Channel Prediction for RIS-assisted MIMO Systems With Channel Aging [11.867884158309373]
Reconfigurable intelligent surfaces (RISs) have emerged as a promising technology to enhance the performance of sixth-generation (6G) and beyond communication systems.
The passive nature of RISs and their large number of reflecting elements pose challenges to the channel estimation process.
We propose an extended channel estimation framework for RIS-assisted multiple-input multiple-output (MIMO) systems based on a convolutional neural network (CNN) integrated with an autoregressive (AR) predictor.
arXiv Detail & Related papers (2024-05-09T19:45:49Z) - Machine Learning for Metasurfaces Design and Their Applications [20.350142630673197]
Machine/deep learning (ML/DL) techniques are proving critical in reducing the computational cost and time of RIS inverse design.
This chapter provides a synopsis of DL techniques for both inverse RIS design and RIS-assisted wireless systems.
arXiv Detail & Related papers (2022-11-02T17:19:37Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Reconfigurable Intelligent Surface Enabled Spatial Multiplexing with
Fully Convolutional Network [40.817290717344534]
Reconfigurable surface (RIS) is an emerging technology for wireless communication systems.
We propose to apply a fully convolutional network (WSNFC) to solve this problem.
We design a set of channel features that includes both cascaded channels via the RIS and the direct channel.
arXiv Detail & Related papers (2022-01-08T14:16:00Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Untrained DNN for Channel Estimation of RIS-Assisted Multi-User OFDM
System with Hardware Impairments [11.012356843958282]
This paper introduces a deep learning-based, low complexity channel estimator for the RIS-assisted multi-user single-input-multiple-output (SIMO) frequency division multiplexing (OFDM) system.
We show that our proposed method has high performance in terms of accuracy and low complexity compared to conventional methods.
arXiv Detail & Related papers (2021-07-13T07:30:43Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
Reconfigurable Intelligent Surfaces (RISs) are highly scalable technology capable of offering dynamic control of electro-magnetic wave propagation.
One of the major challenges with RIS-empowered wireless communications is the low-overhead dynamic configuration of multiple RISs.
We devise low-complexity supervised learning approaches for the RISs' phase configurations.
arXiv Detail & Related papers (2020-10-09T05:35:27Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.