Deep-Learning Investigation of Vibrational Raman Spectra for Plant-Stress Analysis
- URL: http://arxiv.org/abs/2507.15772v1
- Date: Mon, 21 Jul 2025 16:27:34 GMT
- Title: Deep-Learning Investigation of Vibrational Raman Spectra for Plant-Stress Analysis
- Authors: Anoop C. Patil, Benny Jian Rong Sng, Yu-Wei Chang, Joana B. Pereira, Chua Nam-Hai, Rajani Sarojam, Gajendra Pratap Singh, In-Cheol Jang, Giovanni Volpe,
- Abstract summary: Biomolecules within plants serve as key stress indicators, offering vital markers for continuous health monitoring and early disease detection.<n>Traditional Raman analysis relies on customized data-processing that require fluorescence background removal and prior identification of Raman peaks of interest.<n>Here, we introduce DIVA (Deep-learning-based Investigation of Vibrational Raman spectra for plant-stress Analysis), a fully automated workflow based on a variational autoencoder.
- Score: 0.9287179270753105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting stress in plants is crucial for both open-farm and controlled-environment agriculture. Biomolecules within plants serve as key stress indicators, offering vital markers for continuous health monitoring and early disease detection. Raman spectroscopy provides a powerful, non-invasive means to quantify these biomolecules through their molecular vibrational signatures. However, traditional Raman analysis relies on customized data-processing workflows that require fluorescence background removal and prior identification of Raman peaks of interest-introducing potential biases and inconsistencies. Here, we introduce DIVA (Deep-learning-based Investigation of Vibrational Raman spectra for plant-stress Analysis), a fully automated workflow based on a variational autoencoder. Unlike conventional approaches, DIVA processes native Raman spectra-including fluorescence backgrounds-without manual preprocessing, identifying and quantifying significant spectral features in an unbiased manner. We applied DIVA to detect a range of plant stresses, including abiotic (shading, high light intensity, high temperature) and biotic stressors (bacterial infections). By integrating deep learning with vibrational spectroscopy, DIVA paves the way for AI-driven plant health assessment, fostering more resilient and sustainable agricultural practices.
Related papers
- SpectrumFM: A New Paradigm for Spectrum Cognition [65.65474629224558]
We propose a spectrum foundation model, termed SpectrumFM, which provides a new paradigm for spectrum cognition.<n>An innovative spectrum encoder that exploits the convolutional neural networks is proposed to effectively capture both fine-grained local signal structures and high-level global dependencies in the spectrum data.<n>Two novel self-supervised learning tasks, namely masked reconstruction and next-slot signal prediction, are developed for pre-training SpectrumFM, enabling the model to learn rich and transferable representations.
arXiv Detail & Related papers (2025-08-02T14:40:50Z) - Artificial Intelligence in Spectroscopy: Advancing Chemistry from Prediction to Generation and Beyond [38.32974480709081]
The rapid advent of machine learning (ML) and artificial intelligence (AI) has catalyzed major transformations in chemistry.<n>The application of these methods to spectroscopic and spectrometric data, referred to as Spectroscopy Machine Learning (SpectraML), remains relatively underexplored.<n>We provide a unified review of SpectraML, systematically examining state-of-the-art approaches for both forward tasks and inverse tasks.
arXiv Detail & Related papers (2025-02-14T04:07:25Z) - DiffRaman: A Conditional Latent Denoising Diffusion Probabilistic Model for Bacterial Raman Spectroscopy Identification Under Limited Data Conditions [11.586869210490628]
This paper proposes a data generation method utilizing deep generative models to expand the data volume and enhance the recognition accuracy of bacterial Raman spectra.<n> Experimental results demonstrate that synthetic bacterial Raman spectra generated by DiffRaman can effectively emulate real experimental spectra.
arXiv Detail & Related papers (2024-12-11T06:36:55Z) - Causal Representation Learning from Multimodal Biomedical Observations [57.00712157758845]
We develop flexible identification conditions for multimodal data and principled methods to facilitate the understanding of biomedical datasets.<n>Key theoretical contribution is the structural sparsity of causal connections between modalities.<n>Results on a real-world human phenotype dataset are consistent with established biomedical research.
arXiv Detail & Related papers (2024-11-10T16:40:27Z) - Self-supervised Fusarium Head Blight Detection with Hyperspectral Image and Feature Mining [6.252899116304227]
Fusarium Head Blight (FHB) is a serious fungal disease affecting wheat (including durum), barley, oats, other small cereal grains, and corn.
Traditionally, trained agronomists and surveyors perform manual identification, a method that is labor-intensive, impractical, and challenging to scale.
With the advancement of deep learning and Hyper-spectral Imaging (HSI) and Remote Sensing (RS) technologies, employing deep learning, particularly Conal Neural Networks (CNNs) has emerged as a promising solution.
arXiv Detail & Related papers (2024-08-31T09:09:02Z) - Deep Learning Domain Adaptation to Understand Physico-Chemical Processes from Fluorescence Spectroscopy Small Datasets: Application to Ageing of Olive Oil [4.14360329494344]
Fluorescence spectroscopy is a fundamental tool in life sciences and chemistry, widely used for applications such as environmental monitoring, food quality control, and biomedical diagnostics.
Analysis of spectroscopic data with deep learning, in particular of fluorescence excitation-emission matrices (EEMs), presents significant challenges due to the typically small and sparse datasets available.
This study proposes a new approach that exploits domain adaptation with pretrained vision models, alongside a novel interpretability algorithm to address these challenges.
arXiv Detail & Related papers (2024-06-14T13:41:21Z) - Determination of Trace Organic Contaminant Concentration via Machine
Classification of Surface-Enhanced Raman Spectra [0.7029155133139362]
We show an approach for predicting the concentration of sample pollutants from messy, unprocessed Raman data using machine learning.
Using standard machine learning models, the concentration of sample pollutants are predicted with more than 80 percent cross-validation accuracy from raw Raman data.
arXiv Detail & Related papers (2024-01-31T21:49:40Z) - Self-similarity Prior Distillation for Unsupervised Remote Physiological Measurement [39.0083078989343]
We propose a Self-Similarity Prior Distillation (SSPD) framework for unsupervised r estimation.
SSPD capitalizes on the intrinsic self-similarity of cardiac activities.
It achieves comparable or even superior performance compared to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2023-11-09T02:24:51Z) - Amplitude-Independent Machine Learning for PPG through Visibility Graphs
and Transfer Learning [16.79885220470521]
Photoplethysmography (Photoplethysmography) refers to the measurement of variations in blood volume using light.
Photoplethysmography signals provide insight into the body's circulatory system.
Photoplethysmography signals can be employed to extract various bio-features, such as heart rate and vascular ageing.
arXiv Detail & Related papers (2023-05-23T13:41:52Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
The brown marmorated stink bug (BMSB), Halyomorpha halys, is an invasive insect pest of global importance that damages several crops.
The present study consists in a preliminary evaluation at the laboratory level of Near Infrared Hyperspectral Imaging (NIR-HSI) as a possible technology to detect BMSB specimens.
arXiv Detail & Related papers (2023-01-19T11:37:20Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Monitoring MBE substrate deoxidation via RHEED image-sequence analysis
by deep learning [62.997667081978825]
We present an approach for automated surveillance of GaAs substrate deoxidation in MBE using deep learning based RHEED image-sequence classification.
Our approach consists of an non-supervised auto-encoder (AE) for feature extraction, combined with a supervised convolutional network.
arXiv Detail & Related papers (2022-10-07T10:01:06Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
deep learning has become an important tool for rapid screening of billions of molecules in silico for potential hits containing desired chemical features.
Despite its importance, substantial challenges persist in training these models, such as severe class imbalance, high decision thresholds, and lack of ground truth labels in some datasets.
We argue in favor of directly optimizing the receiver operating characteristic (ROC) in such cases, due to its robustness to class imbalance.
arXiv Detail & Related papers (2020-06-25T08:46:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.