論文の概要: Neuromorphic Computing: A Theoretical Framework for Time, Space, and Energy Scaling
- arxiv url: http://arxiv.org/abs/2507.17886v1
- Date: Wed, 23 Jul 2025 19:28:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:42.428895
- Title: Neuromorphic Computing: A Theoretical Framework for Time, Space, and Energy Scaling
- Title(参考訳): ニューロモルフィックコンピューティング - 時間、空間、エネルギースケーリングのための理論的フレームワーク
- Authors: James B Aimone,
- Abstract要約: 我々は NMC が汎用的でプログラム可能なものであるとみなす方法を示す。
NMCの時間と空間のスケーリングは、理論上無限のプロセッサの従来のシステムと同等であることを示す。
NMCアーキテクチャの特徴は、異なるアルゴリズムのクラスに適している。
- 参考スコア(独自算出の注目度): 0.174048653626208
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neuromorphic computing (NMC) is increasingly viewed as a low-power alternative to conventional von Neumann architectures such as central processing units (CPUs) and graphics processing units (GPUs), however the computational value proposition has been difficult to define precisely. Here, we explain how NMC should be seen as general-purpose and programmable even though it differs considerably from a conventional stored-program architecture. We show that the time and space scaling of NMC is equivalent to that of a theoretically infinite processor conventional system, however the energy scaling is significantly different. Specifically, the energy of conventional systems scales with absolute algorithm work, whereas the energy of neuromorphic systems scales with the derivative of algorithm state. The unique characteristics of NMC architectures make it well suited for different classes of algorithms than conventional multi-core systems like GPUs that have been optimized for dense numerical applications such as linear algebra. In contrast, the unique characteristics of NMC make it ideally suited for scalable and sparse algorithms whose activity is proportional to an objective function, such as iterative optimization and large-scale sampling (e.g., Monte Carlo).
- Abstract(参考訳): ニューロモルフィックコンピューティング (NMC) は、中央処理ユニット (CPU) やグラフィックス処理ユニット (GPU) といった従来のフォン・ノイマンのアーキテクチャに代わる低消費電力の代替品としてますます見なされているが、計算値の命題を正確に定義することは困難である。
本稿では,従来のストアドプログラムアーキテクチャとはかなり異なるが,NMCを汎用的でプログラム可能なものとみなす方法について説明する。
NMCの時間と空間のスケーリングは理論上無限のプロセッサシステムと同等であるが、エネルギースケーリングは著しく異なる。
具体的には、従来のシステムのエネルギーは絶対的なアルゴリズムの作用でスケールするが、ニューロモルフィックシステムのエネルギーはアルゴリズム状態の微分でスケールする。
NMCアーキテクチャの特徴は、線形代数のような密度の高い数値アプリケーションに最適化されたGPUのような従来のマルチコアシステムとは異なるアルゴリズムのクラスに適している。
対照的に、NCCの特徴は、反復最適化や大規模サンプリング(モンテカルロなど)のような目的関数に比例した、スケーラブルでスパースなアルゴリズムに理想的である。
関連論文リスト
- Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
本研究では,高次元非定常力学系のスケーラブルかつ柔軟なモデリングのための効率的な変換ガウス過程状態空間モデル(ETGPSSM)を提案する。
具体的には、ETGPSSMは、単一の共有GPと入力依存の正規化フローを統合し、複雑な非定常遷移ダイナミクスを捉える前に、表現的な暗黙のプロセスを生成する。
ETGPSSMは、計算効率と精度の観点から、既存のGPSSMとニューラルネットワークベースのSSMより優れています。
論文 参考訳(メタデータ) (2025-03-24T03:19:45Z) - Optimised Hybrid Classical-Quantum Algorithm for Accelerated Solution of Sparse Linear Systems [0.0]
本稿では, 疎線形系をより効率的に解くために, プレコンディショニング手法とHHLアルゴリズムを組み合わせるハイブリッド古典量子アルゴリズムを提案する。
提案手法は,高速化とスケーラビリティにおいて従来の手法を超越するだけでなく,量子アルゴリズムの本質的な制約を緩和することを示す。
論文 参考訳(メタデータ) (2024-10-03T11:36:14Z) - Randomized Polar Codes for Anytime Distributed Machine Learning [66.46612460837147]
本稿では,低速な計算ノードに対して堅牢で,線形演算の近似計算と精度の両立が可能な分散コンピューティングフレームワークを提案する。
本稿では,復号化のための計算複雑性を低く保ちながら,実数値データを扱うための逐次復号アルゴリズムを提案する。
大規模行列乗算やブラックボックス最適化など,様々な文脈において,このフレームワークの潜在的な応用を実証する。
論文 参考訳(メタデータ) (2023-09-01T18:02:04Z) - Open the box of digital neuromorphic processor: Towards effective
algorithm-hardware co-design [0.08431877864777441]
本稿では,アルゴリズム設計者がSNNアルゴリズムを正確にベンチマークするための実践的なアプローチを提案する。
ビデオ処理とオンライン学習におけるSNNアルゴリズムのエネルギー効率について述べる。
論文 参考訳(メタデータ) (2023-03-27T14:03:11Z) - A Heterogeneous Parallel Non-von Neumann Architecture System for
Accurate and Efficient Machine Learning Molecular Dynamics [9.329011150399726]
本稿では,高精度かつ高効率な機械学習(ML)計算を実現するための特別目的システムを提案する。
このシステムは、フィールドプログラマブルゲートアレイ(FPGA)と、異種並列化で動作するアプリケーション固有集積回路(ASIC)で構成されている。
論文 参考訳(メタデータ) (2023-03-26T05:43:49Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Stochastic Neuromorphic Circuits for Solving MAXCUT [0.6067748036747219]
グラフの最大カット(MAXCUT)を見つけることは、並列アルゴリズム開発を動機づけた古典的な最適化問題である。
ニューロモルフィックコンピューティングは、ニューラルシステムの組織原理を使って、新しい並列コンピューティングアーキテクチャを刺激する。
論文 参考訳(メタデータ) (2022-10-05T22:37:36Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
量子コンピューティングは、カーネルマシンが量子カーネルを利用してデータ間の類似度を表現できるようにすることで、機械学習モデルを強化することができる。
本稿では,ニューラルアーキテクチャ検索やAutoMLと同じような最適化手法を用いて,この問題に対するアプローチを提案する。
その結果、高エネルギー物理問題に対する我々のアプローチを検証した結果、最良のシナリオでは、手動設計のアプローチに関して、テストの精度を一致または改善できることが示された。
論文 参考訳(メタデータ) (2022-09-22T16:42:14Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Neuromorphic scaling advantages for energy-efficient random walk
computation [0.28144129864580447]
ニューロモルフィックコンピューティングは、人間のハードウェアで脳の計算構造とアーキテクチャを再現することを目的としている。
スパイキングニューロモルフィックアーキテクチャの高次並列性と構成性は、離散時間チェーンを介してランダムウォークを実装するのに適していることを示す。
NMCプラットフォームは十分な規模で,高性能コンピューティングプラットフォームのエネルギー需要を大幅に削減できることがわかった。
論文 参考訳(メタデータ) (2021-07-27T19:44:33Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。