論文の概要: A Heterogeneous Parallel Non-von Neumann Architecture System for
Accurate and Efficient Machine Learning Molecular Dynamics
- arxiv url: http://arxiv.org/abs/2303.15474v1
- Date: Sun, 26 Mar 2023 05:43:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 17:56:19.903504
- Title: A Heterogeneous Parallel Non-von Neumann Architecture System for
Accurate and Efficient Machine Learning Molecular Dynamics
- Title(参考訳): 正確かつ効率的な機械学習分子動力学のためのヘテロジニアス並列非線形ノイマンアーキテクチャシステム
- Authors: Zhuoying Zhao, Ziling Tan, Pinghui Mo, Xiaonan Wang, Dan Zhao, Xin
Zhang, Ming Tao, and Jie Liu
- Abstract要約: 本稿では,高精度かつ高効率な機械学習(ML)計算を実現するための特別目的システムを提案する。
このシステムは、フィールドプログラマブルゲートアレイ(FPGA)と、異種並列化で動作するアプリケーション固有集積回路(ASIC)で構成されている。
- 参考スコア(独自算出の注目度): 9.329011150399726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a special-purpose system to achieve high-accuracy and
high-efficiency machine learning (ML) molecular dynamics (MD) calculations. The
system consists of field programmable gate array (FPGA) and application
specific integrated circuit (ASIC) working in heterogeneous parallelization. To
be specific, a multiplication-less neural network (NN) is deployed on the
non-von Neumann (NvN)-based ASIC (SilTerra 180 nm process) to evaluate atomic
forces, which is the most computationally expensive part of MD. All other
calculations of MD are done using FPGA (Xilinx XC7Z100). It is shown that, to
achieve similar-level accuracy, the proposed NvN-based system based on low-end
fabrication technologies (180 nm) is 1.6x faster and 10^2-10^3x more energy
efficiency than state-of-the-art vN based MLMD using graphics processing units
(GPUs) based on much more advanced technologies (12 nm), indicating superiority
of the proposed NvN-based heterogeneous parallel architecture.
- Abstract(参考訳): 本稿では,高精度かつ高効率な機械学習(ML)分子動力学(MD)計算を実現するための専用システムを提案する。
このシステムは、フィールドプログラマブルゲートアレイ(FPGA)と、異種並列化で動作するアプリケーション固有集積回路(ASIC)で構成されている。
具体的には、非ヴォンノイマン(NvN)ベースのASIC(SilTerra 180 nmプロセス)上に乗算レスニューラルネットワーク(NN)を配置し、MDの計算上最も高価な部分である原子力を評価する。
他のMDの計算はすべてFPGA(Xilinx XC7Z100)を用いて行われる。
同様なレベルの精度を達成するために,提案したローエンド加工技術(180nm)に基づくNvNベースのシステムは,より高度な技術(12nm)に基づくグラフィックス処理ユニット(GPU)を用いた最先端のvNベースのMLMDよりも1.6倍高速で10^2-10^3倍エネルギー効率が高い。
関連論文リスト
- MOFA: Discovering Materials for Carbon Capture with a GenAI- and Simulation-Based Workflow [5.310696264367485]
MOFAはオープンソースの生成AI(GenAI)と高速な金属-有機フレームワーク(MOF)のシミュレーションワークフローである。
MOFAは、分散トレーニングや推論を含むGenAIタスクのためのGPU加速コンピューティングと、AI生成のMOFのスクリーニングとフィルタリングのためのCPUおよびGPU最適化タスクを統合する上で、重要な課題に対処する。
論文 参考訳(メタデータ) (2025-01-18T04:10:44Z) - Energy-Aware FPGA Implementation of Spiking Neural Network with LIF Neurons [0.5243460995467893]
スパイキングニューラルネットワーク(SNN)は、TinyMLの最先端ソリューションとして際立っている。
本稿では,第1次Leaky Integrate-and-Fire(LIF)ニューロンモデルに基づく新しいSNNアーキテクチャを提案する。
ハードウェアフレンドリーなLIF設計も提案され、Xilinx Artix-7 FPGA上で実装されている。
論文 参考訳(メタデータ) (2024-11-03T16:42:10Z) - Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Fast, Scalable, Energy-Efficient Non-element-wise Matrix Multiplication on FPGA [10.630802853096462]
現代のニューラルネットワーク(NN)アーキテクチャは、膨大な数の乗算演算に依存している。
本稿ではFPGA上の高スループット,スケーラブル,エネルギー効率の非要素的行列乗算ユニットを提案する。
AMUを使用すると、FPGAベースの量子ニューラルネットワーク(QNN)アクセラレーターの最先端ソリューションよりも最大9倍高いスループットと112倍高いエネルギー効率が得られる。
論文 参考訳(メタデータ) (2024-07-02T15:28:10Z) - Many-body computing on Field Programmable Gate Arrays [5.3808713424582395]
我々は、量子多体計算を行うために、FPGA(Field Programmable Gate Arrays)の機能を利用する。
これにより、モンテカルロアルゴリズムのCPUベースの計算に比べて10倍の高速化が達成された。
FPGAを多体基底状態計算のための典型的なテンソルネットワークアルゴリズムの高速化に利用した。
論文 参考訳(メタデータ) (2024-02-09T14:01:02Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
我々は、共設計ニューラルネットワーク(NN)のトレーニングと実装のためのエンドツーエンドワークフローを開発する。
これにより、ハードウェアにおける効率的なNN実装が、非専門家に、単一のオープンソースワークフローでアクセスできるようになる。
大型ハドロン衝突型加速器(LHC)の40MHz衝突速度で動作しなければならないトリガー決定を含む粒子物理学アプリケーションにおけるワークフローを実演する。
シミュレーションLHC陽子-陽子衝突における高速粒子ジェット用混合精度NNを実装した。
論文 参考訳(メタデータ) (2023-04-13T18:00:01Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - GPU-Accelerated Machine Learning in Non-Orthogonal Multiple Access [71.58925117604039]
非直交多重アクセス(Noma)は、将来の5Gおよび6Gネットワークに必要な大規模な接続を可能にする興味深い技術である。
線形処理と非線形処理の両方の利点を組み合わせたニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-13T09:38:23Z) - Joint Deep Reinforcement Learning and Unfolding: Beam Selection and
Precoding for mmWave Multiuser MIMO with Lens Arrays [54.43962058166702]
離散レンズアレイを用いたミリ波マルチユーザマルチインプット多重出力(MU-MIMO)システムに注目が集まっている。
本研究では、DLA を用いた mmWave MU-MIMO システムのビームプリコーディング行列の共同設計について検討する。
論文 参考訳(メタデータ) (2021-01-05T03:55:04Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - ESSOP: Efficient and Scalable Stochastic Outer Product Architecture for
Deep Learning [1.2019888796331233]
行列ベクトル乗算(MVM)とベクトルベクトル外積(VVOP)は、ディープニューラルネットワーク(DNN)のトレーニングに関連する2つの最も高価な演算である。
DNNの重み更新において,多くの最先端ネットワークで要求される活性化機能を備えたSCに効率的な手法を導入する。
我々のアーキテクチャは、乱数を再使用し、ビットシフトスケーリングによって特定のFP乗算演算を置き換えることで計算コストを削減する。
14nm技術ノードにおけるESSOPのハードウェア設計は、高度にパイプライン化されたFP16乗算器と比較して、ESSOPは82.2%、93.7%エネルギー効率が良いことを示している。
論文 参考訳(メタデータ) (2020-03-25T07:54:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。