Geometric Multi-color Message Passing Graph Neural Networks for Blood-brain Barrier Permeability Prediction
- URL: http://arxiv.org/abs/2507.18926v2
- Date: Fri, 01 Aug 2025 03:44:43 GMT
- Title: Geometric Multi-color Message Passing Graph Neural Networks for Blood-brain Barrier Permeability Prediction
- Authors: Trung Nguyen, Md Masud Rana, Farjana Tasnim Mukta, Chang-Guo Zhan, Duc Duy Nguyen,
- Abstract summary: This paper introduces the geometric multi-color message-passing graph neural network (GMC-MPNN)<n>Our model constructs weighted colored subgraphs based on atom types to capture the spatial relationships and chemical context that govern blood-brain barrier permeability.
- Score: 1.488392495573075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate prediction of blood-brain barrier permeability (BBBP) is essential for central nervous system (CNS) drug development. While graph neural networks (GNNs) have advanced molecular property prediction, they often rely on molecular topology and neglect the three-dimensional geometric information crucial for modeling transport mechanisms. This paper introduces the geometric multi-color message-passing graph neural network (GMC-MPNN), a novel framework that enhances standard message-passing architectures by explicitly incorporating atomic-level geometric features and long-range interactions. Our model constructs weighted colored subgraphs based on atom types to capture the spatial relationships and chemical context that govern BBB permeability. We evaluated GMC-MPNN on three benchmark datasets for both classification and regression tasks, using rigorous scaffold-based splitting to ensure a robust assessment of generalization. The results demonstrate that GMC-MPNN consistently outperforms existing state-of-the-art models, achieving superior performance in both classifying compounds as permeable/non-permeable (AUC-ROC of 0.9704 and 0.9685) and in regressing continuous permeability values (RMSE of 0.4609, Pearson correlation of 0.7759). An ablation study further quantified the impact of specific atom-pair interactions, revealing that the model's predictive power derives from its ability to learn from both common and rare, but chemically significant, functional motifs. By integrating spatial geometry into the graph representation, GMC-MPNN sets a new performance benchmark and offers a more accurate and generalizable tool for drug discovery pipelines.
Related papers
- Aligned Manifold Property and Topology Point Clouds for Learning Molecular Properties [55.2480439325792]
This work introduces AMPTCR, a molecular surface representation that combines local quantum-derived scalar fields and custom topological descriptors within an aligned point cloud format.<n>For molecular weight, results confirm that AMPTCR encodes physically meaningful data, with a validation R2 of 0.87.<n>In the bacterial inhibition task, AMPTCR enables both classification and direct regression of E. coli inhibition values.
arXiv Detail & Related papers (2025-07-22T04:35:50Z) - Combining Graph Neural Networks and Mixed Integer Linear Programming for Molecular Inference under the Two-Layered Model [6.107266553770076]
We develop a molecular inference framework based on mol-infer, namely mol-infer-GNN, that utilizes GNN as the learning method.<n>Our proposed GNN model can obtain satisfying learning performances for some properties despite its simple structure.
arXiv Detail & Related papers (2025-07-05T06:57:37Z) - Multi-Level Fusion Graph Neural Network for Molecule Property Prediction [7.496721948662087]
We propose a Multi-Level Fusion Graph Neural Network (MLFGNN) that integrates Graph Attention Networks and a novel Graph Transformer.<n>Experiments on multiple benchmark datasets demonstrate that MLFGNN consistently outperforms state-of-the-art methods in both classification and regression tasks.
arXiv Detail & Related papers (2025-07-04T09:38:19Z) - Heterogeneous network drug-target interaction prediction model based on graph wavelet transform and multi-level contrastive learning [8.154286666697312]
This study proposes a heterogeneous network drug target interaction prediction framework.<n>It integrates graph neural network and multi scale signal processing technology to construct a model with both efficient prediction and multi level interpretability.<n> Experimental results show that our framework shows excellent prediction performance on all datasets.
arXiv Detail & Related papers (2025-04-27T09:29:50Z) - Graph Kolmogorov-Arnold Networks for Multi-Cancer Classification and Biomarker Identification, An Interpretable Multi-Omics Approach [36.92842246372894]
Multi-Omics Graph Kolmogorov-Arnold Network (MOGKAN) is a deep learning framework that utilizes messenger-RNA, micro-RNA sequences, and DNA methylation samples.<n>By integrating multi-omics data with graph-based deep learning, our proposed approach demonstrates robust predictive performance and interpretability.
arXiv Detail & Related papers (2025-03-29T02:14:05Z) - Explainable Spatio-Temporal GCNNs for Irregular Multivariate Time Series: Architecture and Application to ICU Patient Data [7.433698348783128]
We present XST-CNN (eXG-Temporal Graph Conal Neural Network), a novel architecture for processing heterogeneous and irregular Multi Time Series (MTS) data.
Our approach captures temporal and feature within a unifiedtemporal-temporal pipeline by leveraging a GCNN pipeline.
We evaluate XST-CNN using real-world Electronic Health Record data to predict Multidrug Resistance (MDR) in ICU patients.
arXiv Detail & Related papers (2024-11-01T22:53:17Z) - Neural P$^3$M: A Long-Range Interaction Modeling Enhancer for Geometric
GNNs [66.98487644676906]
We introduce Neural P$3$M, a versatile enhancer of geometric GNNs to expand the scope of their capabilities.
It exhibits flexibility across a wide range of molecular systems and demonstrates remarkable accuracy in predicting energies and forces.
It also achieves an average improvement of 22% on the OE62 dataset while integrating with various architectures.
arXiv Detail & Related papers (2024-09-26T08:16:59Z) - Dumpling GNN: Hybrid GNN Enables Better ADC Payload Activity Prediction Based on Chemical Structure [53.76752789814785]
DumplingGNN is a hybrid Graph Neural Network architecture specifically designed for predicting ADC payload activity based on chemical structure.
We evaluate it on a comprehensive ADC payload dataset focusing on DNA Topoisomerase I inhibitors.
It demonstrates exceptional accuracy (91.48%), sensitivity (95.08%), and specificity (97.54%) on our specialized ADC payload dataset.
arXiv Detail & Related papers (2024-09-23T17:11:04Z) - A deep graph model for the signed interaction prediction in biological network [1.03121181235382]
Predicting signed interactions in biological networks is crucial for understanding drug mechanisms and facilitating drug repurposing.<n>textbfRGCNTD is designed to predict both polar (e.g. activation, inhibition) and non-polar (e.g. binding, affect) chemical-gene interactions.<n>We introduce new evaluation metrics, textitAUCtextsubscriptpolarity and textitCP@500, to assess the model's ability to differentiate interaction types.
arXiv Detail & Related papers (2024-07-10T04:28:21Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.