Quantum-Informed Machine Learning for Chaotic Systems
- URL: http://arxiv.org/abs/2507.19861v2
- Date: Fri, 01 Aug 2025 15:03:13 GMT
- Title: Quantum-Informed Machine Learning for Chaotic Systems
- Authors: Maida Wang, Xiao Xue, Peter V. Coveney,
- Abstract summary: We introduce a quantum-informed machine learning framework for learning partial differential equations.<n>A quantum circuit Born machine is employed to learn the invariant properties of chaotic dynamical systems.<n>The framework is evaluated on three representative systems: the Kuramoto-Sivashinsky equation, two-dimensional Kolmogorov flow and turbulent channel flow.
- Score: 0.8110978727364399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning the behaviour of chaotic systems remains challenging due to instability in long-term predictions and difficulties in accurately capturing invariant statistical properties. While quantum machine learning offers a promising route to efficiently capture physical properties from high-dimensional data, its practical deployment is hindered by current hardware noise and limited scalability. Here, we introduce a quantum-informed machine learning framework for learning partial differential equations, with an application focus on chaotic systems. A quantum circuit Born machine is employed to learn the invariant properties of chaotic dynamical systems, achieving substantial memory efficiency by representing these complex physical statistics with a compact set of trainable circuit parameters. This approach reduces the data storage requirement by over two orders of magnitude compared to the raw simulation data. The resulting statistical quantum-informed prior is then incorporated into a Koopman-based auto-regressive model to address issues such as gradient vanishing or explosion, while maintaining long-term statistical fidelity. The framework is evaluated on three representative systems: the Kuramoto-Sivashinsky equation, two-dimensional Kolmogorov flow and turbulent channel flow. In all cases, the quantum-informed model achieves superior performance compared to its classical counterparts without quantum priors. This hybrid architecture offers a practical route for learning dynamical systems using near-term quantum hardware.
Related papers
- Experimental quantum reservoir computing with a circuit quantum electrodynamics system [0.9786690381850356]
Quantum reservoir computing is a machine learning framework that offers ease of training compared to other quantum neural network models.<n>We propose and experimentally implement a novel quantum reservoir computing platform based on a circuit quantum electrodynamics architecture.<n>Our work demonstrates a hardware-efficient quantum neural network implementation that can be further scaled up and generalized to other quantum machine learning models.
arXiv Detail & Related papers (2025-06-27T08:31:36Z) - Minimal Quantum Reservoirs with Hamiltonian Encoding [72.27323884094953]
We investigate a minimal architecture for quantum reservoir computing based on Hamiltonian encoding.<n>This approach circumvents many of the experimental overheads typically associated with quantum machine learning.
arXiv Detail & Related papers (2025-05-28T16:50:05Z) - Characterizing Non-Markovian Dynamics of Open Quantum Systems [0.0]
We develop a structure-preserving approach to characterizing non-Markovian evolution using the time-convolutionless (TCL) master equation.<n>We demonstrate our methodology using experimental data from a superconducting qubit at the Quantum Device Integration Testbed (QuDIT) at Lawrence Livermore National Laboratory.<n>These findings provide valuable insights into efficient modeling strategies for open quantum systems, with implications for quantum control and error mitigation in near-term quantum processors.
arXiv Detail & Related papers (2025-03-28T04:43:24Z) - Quantum reservoir computing on random regular graphs [0.0]
Quantum reservoir computing (QRC) is a low-complexity learning paradigm that combines input-driven many-body quantum systems with classical learning techniques.<n>We study information localization, dynamical quantum correlations, and the many-body structure of the disordered Hamiltonian.<n>Our findings thus provide guidelines for the optimal design of disordered analog quantum learning platforms.
arXiv Detail & Related papers (2024-09-05T16:18:03Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Higher order quantum reservoir computing for non-intrusive reduced-order models [0.0]
Quantum reservoir computing technique (QRC) is a hybrid quantum-classical framework employing an ensemble of interconnected small quantum systems.
We show that QRC is able to predict complex nonlinear dynamical systems in a stable and accurate manner.
arXiv Detail & Related papers (2024-07-31T13:37:04Z) - Data-Driven Characterization of Latent Dynamics on Quantum Testbeds [0.23408308015481663]
We augment the dynamical equation of quantum systems described by the Lindblad master equation with a parameterized source term.
We consider a structure preserving augmentation that learns and distinguishes unitary from dissipative latent dynamics parameterized by a basis of linear operators.
We demonstrate that our interpretable, structure preserving, and nonlinear models are able to improve the prediction accuracy of the Lindblad master equation.
arXiv Detail & Related papers (2024-01-18T09:28:44Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
arXiv Detail & Related papers (2022-09-07T15:50:00Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.