論文の概要: Learning Latent Graph Geometry via Fixed-Point Schrödinger-Type Activation: A Theoretical Study
- arxiv url: http://arxiv.org/abs/2507.20088v2
- Date: Fri, 07 Nov 2025 06:39:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-10 14:53:49.453403
- Title: Learning Latent Graph Geometry via Fixed-Point Schrödinger-Type Activation: A Theoretical Study
- Title(参考訳): 固定点シュレーディンガー型活性化による潜在グラフ幾何学の学習:理論的研究
- Authors: Dmitry Pasechnyuk-Vilensky, Martin Takáč,
- Abstract要約: 我々は、学習された潜在グラフ上の散逸的シュリンガー型ダイナミクスの定常状態として内部表現が進化するニューラルアーキテクチャの統一的理論的枠組みを開発する。
我々は、平衡の存在、一意性、滑らかな依存を証明し、力学がノルム保存ランダウ-リフシッツ流にブロッホ写像の下で等価であることを示す。
結果として得られるモデルクラスは、固定点 Schr"odinger 型のアクティベーションを通して潜在グラフ幾何学を学ぶためのコンパクトで幾何学的に解釈可能で解析的に抽出可能な基礎を提供する。
- 参考スコア(独自算出の注目度): 1.1745324895296467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a unified theoretical framework for neural architectures whose internal representations evolve as stationary states of dissipative Schr\"odinger-type dynamics on learned latent graphs. Each layer is defined by a fixed-point Schr\"odinger-type equation depending on a weighted Laplacian encoding latent geometry and a convex local potential. We prove existence, uniqueness, and smooth dependence of equilibria, and show that the dynamics are equivalent under the Bloch map to norm-preserving Landau--Lifshitz flows. Training over graph weights and topology is formulated as stochastic optimization on a stratified moduli space of graphs equipped with a natural K\"{a}hler--Hessian metric, ensuring convergence and differentiability across strata. We derive generalization bounds -- PAC-Bayes, stability, and Rademacher complexity -- in terms of geometric quantities such as edge count, maximal degree, and Gromov--Hausdorff distortion, establishing that sparsity and geometric regularity control capacity. Feed-forward composition of stationary layers is proven equivalent to a single global stationary diffusion on a supra-graph; backpropagation is its adjoint stationary system. Finally, directed and vector-valued extensions are represented as sheaf Laplacians with unitary connections, unifying scalar graph, directed, and sheaf-based architectures. The resulting model class provides a compact, geometrically interpretable, and analytically tractable foundation for learning latent graph geometry via fixed-point Schr\"odinger-type activations.
- Abstract(参考訳): 我々は、学習された潜在グラフ上の散逸的シュリンガー型ダイナミクスの定常状態として内部表現が進化するニューラルアーキテクチャの統一的理論的枠組みを開発する。
各層は、潜在幾何学と凸局所ポテンシャルを符号化する重み付きラプラシア式に依存する固定点Schr\"odinger型方程式によって定義される。
我々は、平衡の存在、一意性、滑らかな依存を証明し、この力学がブロッホ写像の下でノルム保存ランダウ-リフシッツフローに等しいことを示す。グラフウェイトとトポロジーのトレーニングは、自然な K\"{a}hler--Hessian 計量を持つグラフの成層的モジュライ空間上の確率的最適化として定式化され、成層間の収束と微分性を保証する。
我々は、辺数、最大等級、グロモフ-ハウスドルフ歪みといった幾何量の観点から、一般化境界(PAC-Bayes, stability, Rademacher complexity)を導出し、空間性と幾何正則性制御能力を確立する。
静止層のフィードフォワード組成は、上図上の1つの大域定常拡散と同値であることが証明されている。
最後に、有向およびベクトル値拡張は、単体接続、スカラーグラフの統一、有向および層ベースアーキテクチャを持つ層ラプラシアンとして表現される。
結果として得られるモデルクラスは、固定点 Schr\"odinger 型のアクティベーションを通して潜在グラフ幾何学を学ぶためのコンパクトで幾何学的に解釈可能で解析的に抽出可能な基礎を提供する。
関連論文リスト
- Adaptive Riemannian Graph Neural Networks [29.859977834688625]
グラフ上の連続および異方性計量テンソル場を学習する新しいフレームワークを導入する。
これにより各ノードがその最適な局所幾何学を決定でき、モデルがグラフの構造的景観に流動的に適応できる。
本手法は, ヘテロ親和性ベンチマークとホモ親和性ベンチマークの双方において, 優れた性能を示す。
論文 参考訳(メタデータ) (2025-08-04T16:55:02Z) - LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering [59.89626219328127]
グラフクラスタリングは機械学習の基本的な問題である。
近年、ディープラーニング手法は最先端の成果を達成しているが、事前に定義されたクラスタ番号なしでは動作できない。
本稿では,グラフ情報理論の新たな視点からこの問題に対処することを提案する。
論文 参考訳(メタデータ) (2024-05-20T05:46:41Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - Supercharging Graph Transformers with Advective Diffusion [28.40109111316014]
本稿では,この課題に対処するために,物理に着想を得たグラフトランスモデルであるAdvDIFFormerを提案する。
本稿では,AdvDIFFormerが位相シフトによる一般化誤差を制御できることを示す。
経験的に、このモデルは情報ネットワーク、分子スクリーニング、タンパク質相互作用の様々な予測タスクにおいて優位性を示す。
論文 参考訳(メタデータ) (2023-10-10T08:40:47Z) - Latent Graph Inference using Product Manifolds [0.0]
遅延グラフ学習のための離散微分可能グラフモジュール(dDGM)を一般化する。
我々の新しいアプローチは、幅広いデータセットでテストされ、元のdDGMモデルよりも優れています。
論文 参考訳(メタデータ) (2022-11-26T22:13:06Z) - Unveiling the Sampling Density in Non-Uniform Geometric Graphs [69.93864101024639]
グラフを幾何学グラフとみなす: ノードは基礎となる計量空間からランダムにサンプリングされ、その距離が指定された近傍半径以下であれば任意のノードが接続される。
ソーシャルネットワークでは、コミュニティは密集したサンプル領域としてモデル化でき、ハブはより大きな近傍半径を持つノードとしてモデル化できる。
我々は,未知のサンプリング密度を自己監督的に推定する手法を開発した。
論文 参考訳(メタデータ) (2022-10-15T08:01:08Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Learning to Learn Graph Topologies [27.782971146122218]
ノードデータからグラフ構造へのマッピングを学習する(L2O)。
このモデルは、ノードデータとグラフサンプルのペアを使ってエンドツーエンドでトレーニングされる。
合成データと実世界のデータの両方の実験により、我々のモデルは、特定のトポロジ特性を持つグラフを学習する際の古典的反復アルゴリズムよりも効率的であることが示された。
論文 参考訳(メタデータ) (2021-10-19T08:42:38Z) - Regularization of Mixture Models for Robust Principal Graph Learning [0.0]
D$次元データポイントの分布から主グラフを学習するために,Mixture Modelsの正規化バージョンを提案する。
モデルのパラメータは期待最大化手順によって反復的に推定される。
論文 参考訳(メタデータ) (2021-06-16T18:00:02Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
我々は,ノード表現の推論を目的とした双曲空間における動的グラフ表現を初めて学習する。
本稿では,HVGNNと呼ばれる新しいハイパーボリック変動グラフネットワークを提案する。
特に,動力学をモデル化するために,理論的に接地した時間符号化手法に基づく時間gnn(tgnn)を導入する。
論文 参考訳(メタデータ) (2021-04-06T01:44:15Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。