論文の概要: Your AI, Not Your View: The Bias of LLMs in Investment Analysis
- arxiv url: http://arxiv.org/abs/2507.20957v1
- Date: Mon, 28 Jul 2025 16:09:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:58.198165
- Title: Your AI, Not Your View: The Bias of LLMs in Investment Analysis
- Title(参考訳): 投資分析におけるLLMのバイアス
- Authors: Hoyoung Lee, Junhyuk Seo, Suhwan Park, Junhyeong Lee, Wonbin Ahn, Chanyeol Choi, Alejandro Lopez-Lira, Yongjae Lee,
- Abstract要約: 金融分野では、事前訓練されたパラメトリック知識とリアルタイム市場データとの相違により、LLM(Large Language Models)は頻繁に知識紛争に直面している。
LLMに基づく投資分析において、確認バイアスの最初の定量的分析を行う。
われわれは、大口株に対する一貫した選好と、ほとんどのモデルにおけるコントラリアン戦略を観察する。
- 参考スコア(独自算出の注目度): 55.328782443604986
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In finance, Large Language Models (LLMs) face frequent knowledge conflicts due to discrepancies between pre-trained parametric knowledge and real-time market data. These conflicts become particularly problematic when LLMs are deployed in real-world investment services, where misalignment between a model's embedded preferences and those of the financial institution can lead to unreliable recommendations. Yet little research has examined what investment views LLMs actually hold. We propose an experimental framework to investigate such conflicts, offering the first quantitative analysis of confirmation bias in LLM-based investment analysis. Using hypothetical scenarios with balanced and imbalanced arguments, we extract models' latent preferences and measure their persistence. Focusing on sector, size, and momentum, our analysis reveals distinct, model-specific tendencies. In particular, we observe a consistent preference for large-cap stocks and contrarian strategies across most models. These preferences often harden into confirmation bias, with models clinging to initial judgments despite counter-evidence.
- Abstract(参考訳): 金融分野では、事前訓練されたパラメトリック知識とリアルタイム市場データとの相違により、LLM(Large Language Models)は頻繁に知識紛争に直面している。
これらの対立は、LLMが実際の投資サービスに配備される際に特に問題となり、モデルが組み込まれている好みと金融機関とのミスアライメントが信頼性の低いレコメンデーションにつながる可能性がある。
しかし、LSMが実際に保持する投資観についてはほとんど研究されていない。
本稿は,LLMに基づく投資分析における確認バイアスの定量的分析として,このような矛盾を調査するための実験的枠組みを提案する。
バランスの取れた議論と不均衡な議論の仮説シナリオを用いて、モデルの潜在的嗜好を抽出し、持続性を測定する。
セクター、サイズ、運動量に着目して分析した結果、モデル固有の傾向が明らかになりました。
特に,大口株式に対する一貫した選好と,ほとんどのモデルにまたがるコントラリアン戦略を考察する。
これらの選好はしばしば確証バイアスに固まり、モデルは反証拠にもかかわらず最初の判断に固執する。
関連論文リスト
- Preference Leakage: A Contamination Problem in LLM-as-a-judge [69.96778498636071]
審査員としてのLLM(Large Language Models)とLLMに基づくデータ合成は、2つの基本的なLLM駆動型データアノテーション法として登場した。
本研究では, 合成データ生成器とLCMに基づく評価器の関連性に起因するLCM-as-a-judgeの汚染問題である選好リークを明らかにする。
論文 参考訳(メタデータ) (2025-02-03T17:13:03Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。
提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
論文 参考訳(メタデータ) (2024-10-03T17:53:30Z) - Financial Statement Analysis with Large Language Models [0.0]
我々はGPT4に標準化された匿名の財務文書を提供し、モデルを解析するように指示する。
このモデルでは、財務アナリストが収益の変化を予測できる能力を上回っている。
GPTの予測に基づく貿易戦略は、他のモデルに基づく戦略よりもシャープ比とアルファ率が高い。
論文 参考訳(メタデータ) (2024-07-25T08:36:58Z) - Are LLMs Rational Investors? A Study on Detecting and Reducing the Financial Bias in LLMs [44.53203911878139]
大規模言語モデル(LLM)は、複雑な市場データとトレンドを解釈する金融分析において、ますます採用されている。
Financial Bias Indicators (FBI)は、Bias Unveiler、Bias Detective、Bias Tracker、Bias Antidoteといったコンポーネントを備えたフレームワークである。
我々は、23のLLMを評価し、財務因果知識に基づく非バイアス化手法を提案する。
論文 参考訳(メタデータ) (2024-02-20T04:26:08Z) - Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models [11.154814189699735]
大規模な言語モデル (LLM) は様々なNLPタスクにおいて優れた性能を示した。
本稿では,金融感情分析のためのLLMフレームワークを提案する。
提案手法の精度は15%から48%向上し,F1得点を得た。
論文 参考訳(メタデータ) (2023-10-06T05:40:23Z) - Empowering Many, Biasing a Few: Generalist Credit Scoring through Large
Language Models [53.620827459684094]
大規模言語モデル(LLM)は、複数のタスクにまたがる強力な一般化能力を持つ信用スコアリングタスクにおいて大きな可能性を秘めている。
クレジットスコアリングのための LLM を探索する,初のオープンソース包括的フレームワークを提案する。
そこで我々は,各種金融リスク評価タスクの煩雑な要求に合わせて,指導チューニングによる最初の信用・リスク評価大言語モデル(CALM)を提案する。
論文 参考訳(メタデータ) (2023-10-01T03:50:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。