A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence
- URL: http://arxiv.org/abs/2507.21046v1
- Date: Mon, 28 Jul 2025 17:59:05 GMT
- Title: A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence
- Authors: Huan-ang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, Hongru Wang, Han Xiao, Yuhang Zhou, Shaokun Zhang, Jiayi Zhang, Jinyu Xiang, Yixiong Fang, Qiwen Zhao, Dongrui Liu, Qihan Ren, Cheng Qian, Zhenghailong Wang, Minda Hu, Huazheng Wang, Qingyun Wu, Heng Ji, Mengdi Wang,
- Abstract summary: Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static.<n>As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck.<n>This survey provides the first systematic and comprehensive review of self-evolving agents.
- Score: 82.10406690705227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static, unable to adapt their internal parameters to novel tasks, evolving knowledge domains, or dynamic interaction contexts. As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck, necessitating agents that can adaptively reason, act, and evolve in real time. This paradigm shift -- from scaling static models to developing self-evolving agents -- has sparked growing interest in architectures and methods enabling continual learning and adaptation from data, interactions, and experiences. This survey provides the first systematic and comprehensive review of self-evolving agents, organized around three foundational dimensions -- what to evolve, when to evolve, and how to evolve. We examine evolutionary mechanisms across agent components (e.g., models, memory, tools, architecture), categorize adaptation methods by stages (e.g., intra-test-time, inter-test-time), and analyze the algorithmic and architectural designs that guide evolutionary adaptation (e.g., scalar rewards, textual feedback, single-agent and multi-agent systems). Additionally, we analyze evaluation metrics and benchmarks tailored for self-evolving agents, highlight applications in domains such as coding, education, and healthcare, and identify critical challenges and research directions in safety, scalability, and co-evolutionary dynamics. By providing a structured framework for understanding and designing self-evolving agents, this survey establishes a roadmap for advancing adaptive agentic systems in both research and real-world deployments, ultimately shedding lights to pave the way for the realization of Artificial Super Intelligence (ASI), where agents evolve autonomously, performing at or beyond human-level intelligence across a wide array of tasks.
Related papers
- Agentic Web: Weaving the Next Web with AI Agents [109.13815627467514]
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web.<n>In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users.<n>We present a structured framework for understanding and building the Agentic Web.
arXiv Detail & Related papers (2025-07-28T17:58:12Z) - Agentic Satellite-Augmented Low-Altitude Economy and Terrestrial Networks: A Survey on Generative Approaches [76.12691010182802]
This survey focuses on enabling agentic artificial intelligence (AI) in satellite-augmented low-altitude economy and terrestrial networks (SLAETNs)<n>We introduce the architecture and characteristics of SLAETNs, and analyze the challenges that arise in integrating satellite, aerial, and terrestrial components.<n>We examine how these models empower agentic functions across three domains: communication enhancement, security and privacy protection, and intelligent satellite tasks.
arXiv Detail & Related papers (2025-07-19T14:07:05Z) - Thinking Beyond Tokens: From Brain-Inspired Intelligence to Cognitive Foundations for Artificial General Intelligence and its Societal Impact [27.722167796617114]
This paper offers a cross-disciplinary synthesis of artificial intelligence, cognitive neuroscience, psychology, generative models, and agent-based systems.<n>We analyze the architectural and cognitive foundations of general intelligence, highlighting the role of modular reasoning, persistent memory, and multi-agent coordination.<n>We identify key scientific, technical, and ethical challenges on the path to Artificial General Intelligence.
arXiv Detail & Related papers (2025-07-01T16:52:25Z) - Graphs Meet AI Agents: Taxonomy, Progress, and Future Opportunities [117.49715661395294]
Data structurization can play a promising role by transforming intricate and disorganized data into well-structured forms.<n>This survey presents a first systematic review of how graphs can empower AI agents.
arXiv Detail & Related papers (2025-06-22T12:59:12Z) - AI Agent Behavioral Science [29.262537008412412]
AI Agent Behavioral Science focuses on the systematic observation of behavior, design of interventions to test hypotheses, and theory-guided interpretation of how AI agents act, adapt, and interact over time.<n>We systematize a growing body of research across individual agent, multi-agent, and human-agent interaction settings, and demonstrate how this perspective informs responsible AI by treating fairness, safety, interpretability, accountability, and privacy as behavioral properties.
arXiv Detail & Related papers (2025-06-04T08:12:32Z) - Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
We introduce the Internet of Agents (IoA) as a foundational framework that enables seamless interconnection, dynamic discovery, and collaborative orchestration among heterogeneous agents at scale.<n>We analyze the key operational enablers of IoA, including capability notification and discovery, adaptive communication protocols, dynamic task matching, consensus and conflict-resolution mechanisms, and incentive models.
arXiv Detail & Related papers (2025-05-12T02:04:37Z) - Artificial Behavior Intelligence: Technology, Challenges, and Future Directions [1.5237607855633524]
This paper defines the technical framework of Artificial Behavior Intelligence (ABI)<n>ABI comprehensively analyzes and interprets human posture, facial expressions, emotions, behavioral sequences, and contextual cues.<n>It details the essential components of ABI, including pose estimation, face and emotion recognition, sequential behavior analysis, and context-aware modeling.
arXiv Detail & Related papers (2025-05-06T08:45:44Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence.<n>As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges.<n>This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.<n>This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.<n>Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.