論文の概要: Leveraging Operator Learning to Accelerate Convergence of the Preconditioned Conjugate Gradient Method
- arxiv url: http://arxiv.org/abs/2508.00101v1
- Date: Thu, 31 Jul 2025 18:53:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.633411
- Title: Leveraging Operator Learning to Accelerate Convergence of the Preconditioned Conjugate Gradient Method
- Title(参考訳): 事前条件付き共役勾配法の収束性向上のための演算子学習の活用
- Authors: Alena Kopaničáková, Youngkyu Lee, George Em Karniadakis,
- Abstract要約: 予備条件付き共役勾配法(PCG)の収束を加速する新しいデフレ戦略を提案する。
我々は演算子学習、特にDeep Operator Network(DeepONet)を用いてデフレ部分空間を生成する。
- 参考スコア(独自算出の注目度): 1.8434042562191815
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a new deflation strategy to accelerate the convergence of the preconditioned conjugate gradient(PCG) method for solving parametric large-scale linear systems of equations. Unlike traditional deflation techniques that rely on eigenvector approximations or recycled Krylov subspaces, we generate the deflation subspaces using operator learning, specifically the Deep Operator Network~(DeepONet). To this aim, we introduce two complementary approaches for assembling the deflation operators. The first approach approximates near-null space vectors of the discrete PDE operator using the basis functions learned by the DeepONet. The second approach directly leverages solutions predicted by the DeepONet. To further enhance convergence, we also propose several strategies for prescribing the sparsity pattern of the deflation operator. A comprehensive set of numerical experiments encompassing steady-state, time-dependent, scalar, and vector-valued problems posed on both structured and unstructured geometries is presented and demonstrates the effectiveness of the proposed DeepONet-based deflated PCG method, as well as its generalization across a wide range of model parameters and problem resolutions.
- Abstract(参考訳): 本研究では,パラメトリックな大規模線形方程式系を解くために,事前条件付き共役勾配法(PCG)の収束を加速する新しいデフレ戦略を提案する。
固有ベクトル近似やリサイクルされたクリロフ部分空間に依存する従来のデフレ手法とは異なり、演算子学習、特にDeep Operator Network~(DeepONet)を用いてデフレ部分空間を生成する。
そこで本研究では,デフレ演算子を組み立てるための2つの補完的アプローチを提案する。
最初のアプローチは、DeepONetによって学習された基底関数を用いて離散PDE演算子の近零空間ベクトルを近似する。
2つ目のアプローチは、DeepONetによって予測されるソリューションを直接活用する。
さらに収束性を高めるために,デフレ演算子のスパーシティパターンを規定するいくつかの戦略を提案する。
本稿では, 定常, 時間依存, スカラー, ベクトル値の問題を, 構造的, 非構造的, かつ, 構造的および非構造的の両方に有意な問題を包含する総合的な数値実験を行い, 提案したDeepONetをベースとしたデフレーションPCG法の有効性と, モデルパラメータと問題解決の広範囲にわたる一般化を実証した。
関連論文リスト
- Deep Equilibrium models for Poisson Imaging Inverse problems via Mirror Descent [7.248102801711294]
ディープ平衡モデル(Deep Equilibrium Models、DEQ)は、固定点を持つ暗黙のニューラルネットワークである。
我々は、非ユークリッド幾何学の仕方で定義されるミラー・ディクセントに基づく新しいDEC式を導入する。
本稿では,効率的なトレーニングと完全パラメータフリー推論が可能な計算戦略を提案する。
論文 参考訳(メタデータ) (2025-07-15T16:33:01Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - A deep implicit-explicit minimizing movement method for option pricing in jump-diffusion models [0.0]
我々は、ジャンプ拡散力学に従う資産に書かれた欧州のバスケットオプションの価格設定のための新しいディープラーニングアプローチを開発する。
オプション価格問題は部分積分微分方程式として定式化され、これは新しい暗黙的な最小化運動タイムステッピング手法によって近似される。
論文 参考訳(メタデータ) (2024-01-12T18:21:01Z) - Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations [0.1578515540930834]
圧縮可能なNavier-Stokes方程式を解くためのエンドツーエンドの微分可能なフレームワークを提案する。
この統合アプローチは、微分可能不連続なガレルキン解法とニューラルネットワークのソース項を組み合わせる。
提案するフレームワークの性能を2つの例で示す。
論文 参考訳(メタデータ) (2023-10-29T04:26:23Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
部分観察決定過程(POMDP)の無限観測および状態空間を用いた強化学習について検討した。
線形構造をもつPOMDPのクラスに対する部分可観測性と関数近似の最初の試みを行う。
論文 参考訳(メタデータ) (2022-04-20T21:15:38Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
我々は、制御に線形に依存する$dot x = sum_i=1lF_i(x)u_i$という形の制御系を考える。
対応するフローを用いて、コンパクトな点のアンサンブル上の微分同相写像の作用を近似する。
論文 参考訳(メタデータ) (2021-10-24T08:57:46Z) - A Deep Learning approach to Reduced Order Modelling of Parameter
Dependent Partial Differential Equations [0.2148535041822524]
パラメーター対解写像の効率的な近似法として,Deep Neural Networks に基づく構築的アプローチを開発した。
特に, パラメタライズド・アドベクション拡散PDEについて検討し, 強輸送場の存在下で方法論を検証した。
論文 参考訳(メタデータ) (2021-03-10T17:01:42Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - On the Convergence Rate of Projected Gradient Descent for a
Back-Projection based Objective [58.33065918353532]
我々は、最小二乗(LS)の代替として、バックプロジェクションに基づく忠実度項を考える。
LS項ではなくBP項を用いることで最適化アルゴリズムの繰り返しを少なくすることを示す。
論文 参考訳(メタデータ) (2020-05-03T00:58:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。