論文の概要: BiFuzz: A Two-Stage Fuzzing Tool for Open-World Video Games
- arxiv url: http://arxiv.org/abs/2508.02144v1
- Date: Mon, 04 Aug 2025 07:43:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 13:37:35.658765
- Title: BiFuzz: A Two-Stage Fuzzing Tool for Open-World Video Games
- Title(参考訳): BiFuzz:オープンワールドゲームのための2段階ファジィツール
- Authors: Yusaku Kato, Norihiro Yoshida, Erina Makihara, Katsuro Inoue,
- Abstract要約: BiFuzz(ビファズ)は、オープンワールドゲームの自動テスト用に設計された2段ファザーである。
実際の移動経路を含む、ゲームプレイとテストケースの全体的な戦略を、ステップバイステップで変更した。
BiFuzzは立ち往生の失敗を検出する。
- 参考スコア(独自算出の注目度): 1.4936946857731093
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Open-world video games present a broader search space than other games, posing challenges for test automation. Fuzzing, which generates new inputs by mutating an initial input, is commonly used to uncover failures. In this study, we proposed BiFuzz, a two-stage fuzzer designed for automated testing of open-world video games, and investigated its effectiveness. The results revealed that BiFuzz mutated the overall strategy of gameplay and test cases, including actual movement paths, step by step. Consequently, BiFuzz can detect `stucking' failures. The tool and its video are at https://github.com/Yusaku-Kato/BiFuzz.
- Abstract(参考訳): オープンワールドのビデオゲームは、他のゲームよりも広い検索スペースを示し、テスト自動化の課題を提起している。
ファジィング(Fuzzing)は、初期入力を変更して新しい入力を生成するもので、障害を明らかにするために一般的に使用される。
本研究では,オープンワールドゲームの自動テスト用に設計された2段ファザであるBiFuzzを提案し,その有効性を検討した。
その結果、BiFuzzは実際の移動経路を含む、ゲームプレイとテストケースの全体戦略を段階的に変更したことが明らかとなった。
その結果、BiFuzzは‘stucking’失敗を検出することができる。
ツールとそのビデオはhttps://github.com/Yusaku-kato/BiFuzz.comにある。
関連論文リスト
- Prompt Fuzzing for Fuzz Driver Generation [6.238058387665971]
本稿では,プロンプトファジングのためのカバーガイドファジングであるPromptFuzzを提案する。
未発見のライブラリコードを探索するためにファズドライバを反復的に生成する。
PromptFuzzはOSS-FuzzとHopperの2倍のブランチカバレッジを達成した。
論文 参考訳(メタデータ) (2023-12-29T16:43:51Z) - Genetic Algorithms for Evolution of QWOP Gaits [0.0]
QWOPはブラウザベースの2次元フラッシュゲームで、選手は100メートルの模擬レースに出場するオリンピックの陸上競技選手を制御する。
ゲームの目的は、走者の足の筋肉を制御するQ、W、O、Pキーを使用して、100メートルレースの終了までできるだけ早く走者を進めることである。
単純なコントロールと単純なゴールにもかかわらず、難易度と直感的なゲームプレイで有名である。
論文 参考訳(メタデータ) (2023-10-18T12:53:50Z) - Vulnerability Detection Through an Adversarial Fuzzing Algorithm [2.074079789045646]
本プロジェクトは,ファザがより多くの経路を探索し,短時間でより多くのバグを発見できるようにすることにより,既存のファザの効率を向上させることを目的としている。
逆法は、より効率的なファジィングのためのテストケースを生成するために、現在の進化アルゴリズムの上に構築されている。
論文 参考訳(メタデータ) (2023-07-21T21:46:28Z) - Automated Graph Genetic Algorithm based Puzzle Validation for Faster
Game Desig [69.02688684221265]
本稿では,コンピュータゲームにおける論理パズルを効率的に解くための進化的アルゴリズムを提案する。
制約満足度問題に対するハイブリッド遺伝的アプローチの様々なバリエーションについて論じる。
論文 参考訳(メタデータ) (2023-02-17T18:15:33Z) - Go-Explore Complex 3D Game Environments for Automated Reachability
Testing [4.322647881761983]
本稿では,強力な探索アルゴリズムであるGo-Exploreに基づいて,シミュレーションされた3次元環境における到達性バグを対象とするアプローチを提案する。
Go-Exploreはマップ全体でユニークなチェックポイントを保存し、そこから探索する有望なチェックポイントを特定する。
我々のアルゴリズムは1台のマシンで10時間以内に1.5km x 1.5kmのゲーム世界を完全にカバーできる。
論文 参考訳(メタデータ) (2022-09-01T16:31:37Z) - Inspector: Pixel-Based Automated Game Testing via Exploration,
Detection, and Investigation [116.41186277555386]
Inspectorは、ゲームと深く統合することなく、異なるゲームに容易に適用できるゲームテストエージェントである。
インスペクタは純粋にピクセル入力に基づいており、ゲームスペースエクスプローラー、キーオブジェクト検出器、人間に似たオブジェクトインスペクタの3つの重要なモジュールから構成されている。
実験結果は,ゲーム空間の探索,キーオブジェクトの検出,オブジェクトの調査におけるインスペクタの有効性を示す。
論文 参考訳(メタデータ) (2022-07-18T04:49:07Z) - SUPERNOVA: Automating Test Selection and Defect Prevention in AAA Video
Games Using Risk Based Testing and Machine Learning [62.997667081978825]
従来の手法では、成長するソフトウェアシステムではスケールできないため、ビデオゲームのテストはますます難しいタスクになります。
自動化ハブとして機能しながら,テスト選択と欠陥防止を行うシステム SUPERNOVA を提案する。
この直接的な影響は、未公表のスポーツゲームタイトルの55%以上のテスト時間を減らすことが観察されている。
論文 参考訳(メタデータ) (2022-03-10T00:47:46Z) - Learning to Identify Perceptual Bugs in 3D Video Games [1.370633147306388]
そこで本研究では,学習に基づく手法を用いて,知覚的バグの範囲を同定できることを示す。
World of Bugs (WOB)は、3Dゲーム環境でABDメソッドをテストするオープンプラットフォームである。
論文 参考訳(メタデータ) (2022-02-25T18:50:11Z) - CCPT: Automatic Gameplay Testing and Validation with
Curiosity-Conditioned Proximal Trajectories [65.35714948506032]
Curiosity-Conditioned Proximal Trajectories (CCPT)法は、好奇心と模倣学習を組み合わせてエージェントを訓練して探索する。
CCPTが複雑な環境を探索し、ゲームプレイの問題を発見し、その過程におけるデザインの監視を行い、それらをゲームデザイナーに直接認識し、強調する方法について説明する。
論文 参考訳(メタデータ) (2022-02-21T09:08:33Z) - DFGC 2021: A DeepFake Game Competition [58.77039013470618]
本稿では,DFGC 2021コンペティションの概要を紹介する。
DeepFakeの技術は急速に発展しており、現実的なフェイススワップはますます認知しにくくなっている。
このコンペティションは、現在の最先端のDeepFake生成と検出方法の間の対戦ゲームをベンチマークするための共通プラットフォームを提供する。
論文 参考訳(メタデータ) (2021-06-02T15:10:13Z) - DeFuzz: Deep Learning Guided Directed Fuzzing [41.61500799890691]
本稿では,DeFuzzというソフトウェア脆弱性検出のための,ディープラーニング(DL)誘導指向ファズリングを提案する。
DeFuzzには2つの主要なスキームが含まれている。 1) 潜在的に脆弱な機能と位置(脆弱性のあるアドレス)を特定するために、トレーニング済みのDL予測モデルを使用する。
正確には、Bidirectional-LSTM (BiLSTM) を用いて注意語を識別し、その脆弱性はこれらの注意語に関連付けられている。
論文 参考訳(メタデータ) (2020-10-23T03:44:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。