論文の概要: U-PINet: End-to-End Hierarchical Physics-Informed Learning With Sparse Graph Coupling for 3D EM Scattering Modeling
- arxiv url: http://arxiv.org/abs/2508.03774v1
- Date: Tue, 05 Aug 2025 12:20:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.388839
- Title: U-PINet: End-to-End Hierarchical Physics-Informed Learning With Sparse Graph Coupling for 3D EM Scattering Modeling
- Title(参考訳): U-PINet:3次元EM散乱モデリングのためのスパースグラフ結合を用いた階層型物理インフォームドラーニング
- Authors: Rui Zhu, Yuexing Peng, Peng Wang, George C. Alexandropoulos, Wenbo Wang, Wei Xiang,
- Abstract要約: 電磁波散乱モデリングは、レーダーリモートセンシングに不可欠である。
従来の数値解法は精度が高いが、スケーラビリティの問題と計算コストに悩まされている。
これらの制約を克服するために,U字型物理情報ネットワーク (U-PINet) を提案する。
- 参考スコア(独自算出の注目度): 28.64166932076228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electromagnetic (EM) scattering modeling is critical for radar remote sensing, however, its inherent complexity introduces significant computational challenges. Traditional numerical solvers offer high accuracy, but suffer from scalability issues and substantial computational costs. Pure data-driven deep learning approaches, while efficient, lack physical constraints embedding during training and require extensive labeled data, limiting their applicability and generalization. To overcome these limitations, we propose a U-shaped Physics-Informed Network (U-PINet), the first fully deep-learning-based, physics-informed hierarchical framework for computational EM designed to ensure physical consistency while maximizing computational efficiency. Motivated by the hierarchical decomposition strategy in EM solvers and the inherent sparsity of local EM coupling, the U-PINet models the decomposition and coupling of near- and far-field interactions through a multiscale processing neural network architecture, while employing a physics-inspired sparse graph representation to efficiently model both self- and mutual- coupling among mesh elements of complex $3$-Dimensional (3D) objects. This principled approach enables end-to-end multiscale EM scattering modeling with improved efficiency, generalization, and physical consistency. Experimental results showcase that the U-PINet accurately predicts surface current distributions, achieving close agreement with traditional solver, while significantly reducing computational time and outperforming conventional deep learning baselines in both accuracy and robustness. Furthermore, our evaluations on radar cross section prediction tasks confirm the feasibility of the U-PINet for downstream EM scattering applications.
- Abstract(参考訳): 電磁法(EM)散乱モデリングは、レーダーリモートセンシングにおいて重要であるが、その固有の複雑さは重要な計算課題をもたらす。
従来の数値解法は精度が高いが、スケーラビリティの問題と計算コストに悩まされている。
純粋なデータ駆動ディープラーニングアプローチは効率的だが、トレーニング中に物理的な制約が組み込まれておらず、広範なラベル付きデータを必要とし、適用性と一般化を制限している。
これらの制約を克服するために,計算効率を最大化しながら物理の整合性を確保するように設計された計算EMのための,完全なディープラーニングに基づく,物理情報に基づく最初の階層的フレームワークであるU字型物理情報ネットワーク(U-PINet)を提案する。
U-PINetは、EMソルバの階層的分解戦略と局所EMカップリングの本質的にの空間性によって動機付けられ、複雑な3$3Dオブジェクトのメッシュ要素間の自己結合と相互結合の両方を効率的にモデル化するために、物理に着想を得たスパースグラフ表現を使用しながら、マルチスケール処理ニューラルネットワークアーキテクチャによる近場相互作用と遠方相互作用の分解と結合をモデル化する。
この原理は、効率、一般化、物理的整合性を改善したエンドツーエンドのマルチスケールEM散乱モデリングを可能にする。
実験結果から,U-PINetは従来の解法と密に一致し,表面電流分布を正確に予測し,計算時間を大幅に短縮し,精度と堅牢性の両方において従来のディープラーニングベースラインよりも優れていた。
さらに, レーダ断面予測タスクの評価により, 下流EM散乱への応用におけるU-PINetの実現可能性を確認した。
関連論文リスト
- OmniFluids: Unified Physics Pre-trained Modeling of Fluid Dynamics [25.066485418709114]
OmniFluidsは、物理を事前訓練した演算子学習フレームワークである。
物理学のみの事前訓練、粗い乾燥したオペレーター蒸留、および数発の微調整を統合している。
流れ場再構成や乱流統計の精度において、最先端のAI駆動手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2025-06-12T16:23:02Z) - A Neural Network Architecture Based on Attention Gate Mechanism for 3D Magnetotelluric Forward Modeling [1.5862483908050367]
本稿では,3次元MTフォワードモデリングのためのアテンションゲーティング機構を統合したMTAGU-Netという新しいニューラルネットワークアーキテクチャを提案する。
デュアルパスアテンションゲーティングモジュールは、前方応答データ画像に基づいて設計され、エンコーダとデコーダの間のスキップ接続に埋め込まれる。
3次元ガウスランダム場(GRF)を利用した合成モデル生成法は,実世界の地質学的シナリオの電気的構造を正確に再現する。
論文 参考訳(メタデータ) (2025-03-14T13:48:25Z) - Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations [49.173541207550485]
Adaptive Meshing By Expert Reconstruction (AMBER) は模倣学習問題である。
AMBERは、グラフニューラルネットワークとオンラインデータ取得スキームを組み合わせて、専門家メッシュの投影されたサイズフィールドを予測する。
我々は、人間の専門家が提供した2Dメッシュと3Dメッシュ上でAMBERを実験的に検証し、提供されたデモと密に一致し、シングルステップのCNNベースラインを上回った。
論文 参考訳(メタデータ) (2024-06-20T10:01:22Z) - Knowledge-Based Convolutional Neural Network for the Simulation and Prediction of Two-Phase Darcy Flows [3.5707423185282656]
物理インフォームドニューラルネットワーク(PINN)は、科学計算とシミュレーションの分野で強力なツールとして注目されている。
本稿では、ニューラルネットワークのパワーと、離散化微分方程式によって課される力学を組み合わせることを提案する。
支配方程式を識別することにより、PINNは不連続性を考慮し、入力と出力の間の基礎となる関係を正確に捉えることを学ぶ。
論文 参考訳(メタデータ) (2024-04-04T06:56:32Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Physics-enhanced deep surrogates for partial differential equations [30.731686639510517]
本稿では, 複雑な物理系のための高速サロゲートモデル開発に向けて, 物理強化ディープサロゲート(PEDS)アプローチを提案する。
具体的には,低忠実で説明可能な物理シミュレータとニューラルネットワークジェネレータの組み合わせを提案する。
論文 参考訳(メタデータ) (2021-11-10T18:43:18Z) - Revisit Geophysical Imaging in A New View of Physics-informed Generative
Adversarial Learning [2.12121796606941]
完全な波形反転は高分解能地下モデルを生成する。
最小二乗関数を持つFWIは、局所ミニマ問題のような多くの欠点に悩まされる。
偏微分方程式とニューラルネットワークを用いた最近の研究は、2次元FWIに対して有望な性能を示している。
本稿では,波動方程式を識別ネットワークに統合し,物理的に一貫したモデルを正確に推定する,教師なし学習パラダイムを提案する。
論文 参考訳(メタデータ) (2021-09-23T15:54:40Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。