論文の概要: Generative AI in Training and Coaching: Redefining the Design Process of Learning Materials
- arxiv url: http://arxiv.org/abs/2508.11662v1
- Date: Wed, 06 Aug 2025 03:42:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-24 10:27:26.4851
- Title: Generative AI in Training and Coaching: Redefining the Design Process of Learning Materials
- Title(参考訳): トレーニングとコーチングにおけるジェネレーティブAI--学習教材のデザインプロセスを再定義する
- Authors: Alexander Komar, Marc-André Heidelmann, Kristina Schaaff,
- Abstract要約: 我々は、AIが学習材料の設計プロセスにどのように統合され、その効率、教育的品質、そして人間のトレーナーとコーチの進化的な役割に与える影響を評価する。
教育と企業研修の専門職との質的なインタビューを通じて、以下の主要なトピックを特定した。
GenAIをベースにしたツールが、個人、組織、システム、戦略的レベルでトレーナーやコーチにうまく実装できるかを導出します。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative artificial intelligence (GenAI) is transforming education, redefining the role of trainers and coaches in learning environments. In our study, we explore how AI integrates into the design process of learning materials, assessing its impact on efficiency, pedagogical quality, and the evolving role of human trainers and coaches. Through qualitative interviews with professionals in education and corporate training, we identify the following key topics: trainers and coaches increasingly act as facilitators and content moderators rather than primary creators, efficiency gains allow for a stronger strategic focus but at the same time the new tools require new skills. Additionally, we analyze how the anthropomorphism of AI shapes user trust and expectations. From these insights, we derive how tools based on GenAI can successfully be implemented for trainers and coaches on an individual, organizational, systemic, and strategic level.
- Abstract(参考訳): ジェネレーティブ人工知能(GenAI)は、学習環境におけるトレーナーとコーチの役割を再定義し、教育を変革している。
本研究では,AIが学習材料の設計プロセスにどのように統合され,その効率,教育的品質,人間のトレーナーとコーチの進化的役割に対する影響を評価する。
トレーニング担当者とコーチは、プライマリ・クリエーターよりもファシリテーターやコンテンツモデレーターとしての役割をますます高め、効率の向上はより強力な戦略的焦点を与えるが、同時に新しいツールは新たなスキルを必要としている。
さらに、AIの人文準同型がユーザーの信頼と期待をいかに形作るかを分析する。
これらの知見から、個人、組織、システム、戦略的レベルのトレーナーやコーチに対して、GenAIベースのツールをうまく実装する方法を導出します。
関連論文リスト
- AI-Powered Math Tutoring: Platform for Personalized and Adaptive Education [0.0]
本稿では,適応的およびパーソナライズされたフィードバック,構造化コース生成,教科書知識検索を組み合わせた,新しいマルチエージェントAI学習プラットフォームを提案する。
このシステムにより、学生は新しいトピックを学習し、弱点を特定し、ターゲティングし、試験を効果的に修正し、無制限にパーソナライズされたエクササイズを実践することができる。
論文 参考訳(メタデータ) (2025-07-14T20:35:16Z) - AI Pedagogy: Dialogic Social Learning for Artificial Agents [0.6553587309274792]
本研究では,従来のAIトレーニング手法の限界に対処するために,社会的に媒介する学習パラダイムの可能性を探る。
そこで我々は,AI学習者エージェントが,知識のあるAI教師エージェントと教科の教育対話を行う,AIソーシャルガイム(AI Social Gym)と呼ばれる動的環境を導入する。
我々の調査は、異なる教育戦略が、買収の文脈におけるAI学習プロセスにどのように影響するかに焦点を当てている。
論文 参考訳(メタデータ) (2025-05-25T11:19:48Z) - LLM-powered Multi-agent Framework for Goal-oriented Learning in Intelligent Tutoring System [54.71619734800526]
GenMentorは、ITS内で目標指向でパーソナライズされた学習を提供するために設計されたマルチエージェントフレームワークである。
学習者の目標を、カスタムのゴール・トゥ・スキルデータセットでトレーニングされた微調整LDMを使用して、必要なスキルにマッピングする。
GenMentorは、個々の学習者のニーズに合わせて探索・描画・統合機構で学習内容を調整する。
論文 参考訳(メタデータ) (2025-01-27T03:29:44Z) - Generative AI Literacy: Twelve Defining Competencies [48.90506360377104]
本稿では、生成AIと対話するために必要なスキルと知識領域を網羅した、生成人工知能(AI)リテラシーの能力に基づくモデルを提案する。
能力は、基礎的なAIリテラシーから、倫理的および法的考慮を含むエンジニアリングとプログラミングのスキルの促進まで様々である。
これらの12の能力は、個人、政策立案者、政府高官、教育者が責任を持って生成AIの可能性をナビゲートし活用しようとするための枠組みを提供する。
論文 参考訳(メタデータ) (2024-11-29T14:55:15Z) - Collaborative Design of AI-Enhanced Learning Activities [0.0]
我々は、プレサービス教師、インサービス教師、EdTechスペシャリストがAIを教育実践に効果的に組み込むことができるような形式的な介入を開発する。
参加者は、AIリテラシーを教育に組み込むさまざまなアクティビティを探求することで、AIの教育と学習のポテンシャルを反映している。
論文 参考訳(メタデータ) (2024-07-09T08:34:08Z) - Enhancing Instructional Quality: Leveraging Computer-Assisted Textual
Analysis to Generate In-Depth Insights from Educational Artifacts [13.617709093240231]
本研究では、人工知能(AI)と機械学習(ML)が教育内容、教師の談話、学生の反応を分析して教育改善を促進する方法について検討する。
私たちは、教師のコーチング、学生のサポート、コンテンツ開発など、AI/ML統合が大きな利点をもたらす重要な領域を特定します。
本稿では,AI/ML技術と教育的目標との整合性の重要性を強調し,その教育的可能性を実現する。
論文 参考訳(メタデータ) (2024-03-06T18:29:18Z) - Artificial Intelligence-Enabled Intelligent Assistant for Personalized
and Adaptive Learning in Higher Education [0.2812395851874055]
本稿では,AIIA(Artificial Intelligence-Enabled Intelligent Assistant)という,高等教育におけるパーソナライズおよび適応学習のための新しいフレームワークを提案する。
AIIAシステムは、高度なAIと自然言語処理(NLP)技術を活用して、対話的で魅力的な学習プラットフォームを構築する。
論文 参考訳(メタデータ) (2023-09-19T19:31:15Z) - Teachable Reinforcement Learning via Advice Distillation [161.43457947665073]
外部教師が提供した構造化アドバイスから学習する「教育可能な」意思決定システムに基づく対話型学習のための新しい指導パラダイムを提案する。
我々は、アドバイスから学ぶエージェントが、標準的な強化学習アルゴリズムよりも人的監督力の少ない新しいスキルを習得できることを示す。
論文 参考訳(メタデータ) (2022-03-19T03:22:57Z) - Learning to Complement Humans [67.38348247794949]
オープンワールドにおけるAIに対するビジョンの高まりは、知覚、診断、推論タスクのために人間を補完できるシステムの開発に焦点を当てている。
我々は,人間-機械チームの複合的なパフォーマンスを最適化するために,エンド・ツー・エンドの学習戦略をどのように活用できるかを実証する。
論文 参考訳(メタデータ) (2020-05-01T20:00:23Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。