論文の概要: No More Blind Spots: Learning Vision-Based Omnidirectional Bipedal Locomotion for Challenging Terrain
- arxiv url: http://arxiv.org/abs/2508.11929v1
- Date: Sat, 16 Aug 2025 06:20:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:10.460085
- Title: No More Blind Spots: Learning Vision-Based Omnidirectional Bipedal Locomotion for Challenging Terrain
- Title(参考訳): 盲点がない:視力に基づく一方向二足歩行の学習
- Authors: Mohitvishnu S. Gadde, Pranay Dugar, Ashish Malik, Alan Fern,
- Abstract要約: 視覚に基づく全方向二足歩行のための学習フレームワークを提案する。
重要な課題は、シミュレーションにおいて一方向の深度画像をレンダリングする計算コストが高いことである。
本手法は、視覚に基づく生徒政策を監督する教師ポリシーと、頑健なブラインドコントローラを組み合わせる。
- 参考スコア(独自算出の注目度): 12.51464645002418
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective bipedal locomotion in dynamic environments, such as cluttered indoor spaces or uneven terrain, requires agile and adaptive movement in all directions. This necessitates omnidirectional terrain sensing and a controller capable of processing such input. We present a learning framework for vision-based omnidirectional bipedal locomotion, enabling seamless movement using depth images. A key challenge is the high computational cost of rendering omnidirectional depth images in simulation, making traditional sim-to-real reinforcement learning (RL) impractical. Our method combines a robust blind controller with a teacher policy that supervises a vision-based student policy, trained on noise-augmented terrain data to avoid rendering costs during RL and ensure robustness. We also introduce a data augmentation technique for supervised student training, accelerating training by up to 10 times compared to conventional methods. Our framework is validated through simulation and real-world tests, demonstrating effective omnidirectional locomotion with minimal reliance on expensive rendering. This is, to the best of our knowledge, the first demonstration of vision-based omnidirectional bipedal locomotion, showcasing its adaptability to diverse terrains.
- Abstract(参考訳): 乱雑な屋内空間や不均一な地形のような動的環境における効果的な二足歩行は、あらゆる方向にアジャイルで適応的な動きを必要とする。
これは全方位測位とそのような入力を処理できる制御装置を必要とする。
視覚に基づく全方向二足歩行のための学習フレームワークを提案し,深度画像を用いたシームレスな運動を可能にする。
鍵となる課題は、シミュレーションにおいて一方向の深度画像をレンダリングする計算コストが高く、従来のsim-to-real reinforcement learning (RL)を非現実的にすることである。
提案手法は,ロバストなブラインドコントローラと教師ポリシーを組み合わせることで,RL中のレンダリングコストを回避し,ロバスト性を確保するために,騒音増強地形データに基づいて訓練された視覚ベースの学生ポリシーを監督する。
また,教師付き学生養成のためのデータ強化手法を導入し,従来の方法に比べて最大10倍のトレーニングを加速させた。
我々のフレームワークはシミュレーションと実世界のテストを通じて検証され、高価なレンダリングに最小限の依存で全方位移動を効果的に実証する。
これは、私たちの知る限りでは、視覚に基づく全方向二足歩行の最初のデモであり、多様な地形への適応性を示している。
関連論文リスト
- Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
物理学に基づくヒューマノイド制御のための総合的な運動スキルを含む普遍的な運動表現を提案する。
まず、大きな非構造運動データセットから人間の動きをすべて模倣できる動き模倣機を学習する。
次に、模倣者から直接スキルを蒸留することで、動作表現を作成します。
論文 参考訳(メタデータ) (2023-10-06T20:48:43Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
本稿では,既存のコントローラから新しいタスクを学習するために経験を移譲することで,複雑なロボティクススキルを訓練するためのフレームワークを提案する。
提案手法は,複雑なアジャイルジャンプ行動の学習,後肢を歩いたまま目標地点への移動,新しい環境への適応を可能にする。
論文 参考訳(メタデータ) (2023-04-19T17:37:54Z) - Learning Perception-Aware Agile Flight in Cluttered Environments [38.59659342532348]
乱雑な環境下での知覚に敏感で最小時間飛行を実現するニューラルネットワークポリシーを学習する手法を提案する。
提案手法は認識と制御を密に結合し,計算速度(10倍高速)と成功率に有意な優位性を示す。
本研究では, クローズドループ制御性能を最大50km/hの速さで実機とハードウェア・イン・ザ・ループシミュレーションを用いて実証する。
論文 参考訳(メタデータ) (2022-10-04T18:18:58Z) - A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free
Reinforcement Learning [86.06110576808824]
深層強化学習は、制御されていない環境での学習ポリシーに対する有望なアプローチである。
機械学習アルゴリズムとライブラリの最近の進歩と、慎重に調整されたロボットコントローラを組み合わせることで、現実世界では4分で学習できる。
論文 参考訳(メタデータ) (2022-08-16T17:37:36Z) - Learning to Jump from Pixels [23.17535989519855]
我々は、高度にアジャイルな視覚的誘導行動の合成法であるDepth-based Impulse Control (DIC)を提案する。
DICは、モデルフリー学習の柔軟性を提供するが、地面反応力の明示的なモデルベース最適化により、振る舞いを規則化する。
提案手法をシミュレーションと実世界の両方で評価する。
論文 参考訳(メタデータ) (2021-10-28T17:53:06Z) - An Adaptable Approach to Learn Realistic Legged Locomotion without
Examples [38.81854337592694]
本研究は,バネ装荷逆振り子モデルを用いて学習プロセスを導くことで,移動における現実性を保証するための汎用的アプローチを提案する。
モデルのない設定であっても、2足歩行ロボットと4足歩行ロボットに対して、学習したポリシーが現実的でエネルギー効率のよい移動歩行を生成できることを示す実験結果を示す。
論文 参考訳(メタデータ) (2021-10-28T10:14:47Z) - Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual
Observations [75.60524561611008]
この研究は、人中心の環境において、よく見られるバンプ、ランプ、階段の広い範囲にわたる知覚的移動を達成するために、スパースな視覚的観察の使用を活用することを目的としている。
まず、関心の均一な面を表すことのできる最小限の視覚入力を定式化し、このような外受容的・固有受容的データを統合した学習フレームワークを提案する。
本研究では, 平地を全方向歩行し, 障害物のある地形を前方移動させるタスクにおいて, 学習方針を検証し, 高い成功率を示す。
論文 参考訳(メタデータ) (2021-09-28T20:25:10Z) - Learning Vision-Guided Quadrupedal Locomotion End-to-End with
Cross-Modal Transformers [14.509254362627576]
強化学習(RL)を用いた四足歩行課題への取り組みを提案する。
四足歩行のためのエンドツーエンドRL法であるLocoTransformerを導入する。
論文 参考訳(メタデータ) (2021-07-08T17:41:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。