論文の概要: PIANO: Physics Informed Autoregressive Network
- arxiv url: http://arxiv.org/abs/2508.16235v1
- Date: Fri, 22 Aug 2025 09:12:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-25 16:42:36.331096
- Title: PIANO: Physics Informed Autoregressive Network
- Title(参考訳): PIANO:物理インフォームドオートレグレッシブネットワーク
- Authors: Mayank Nagda, Jephte Abijuru, Phil Ostheimer, Marius Kloft, Sophie Fellenz,
- Abstract要約: 我々は,動的システムのモデル化のためにPINNを再設計するフレームワークであるPiaNO(Physical-Informed Autoregressive Networks)を紹介する。
PIANOは最先端の性能を達成し、既存の手法よりも精度と安定性を著しく向上させる。
- 参考スコア(独自算出の注目度): 23.37066841328924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving time-dependent partial differential equations (PDEs) is fundamental to modeling critical phenomena across science and engineering. Physics-Informed Neural Networks (PINNs) solve PDEs using deep learning. However, PINNs perform pointwise predictions that neglect the autoregressive property of dynamical systems, leading to instabilities and inaccurate predictions. We introduce Physics-Informed Autoregressive Networks (PIANO) -- a framework that redesigns PINNs to model dynamical systems. PIANO operates autoregressively, explicitly conditioning future predictions on the past. It is trained through a self-supervised rollout mechanism while enforcing physical constraints. We present a rigorous theoretical analysis demonstrating that PINNs suffer from temporal instability, while PIANO achieves stability through autoregressive modeling. Extensive experiments on challenging time-dependent PDEs demonstrate that PIANO achieves state-of-the-art performance, significantly improving accuracy and stability over existing methods. We further show that PIANO outperforms existing methods in weather forecasting.
- Abstract(参考訳): 時間依存偏微分方程式(PDE)の解法は、科学や工学における重要な現象をモデル化するための基礎となる。
物理情報ニューラルネットワーク(PINN)は深層学習を用いてPDEを解く。
しかし、PINNは動的システムの自己回帰性を無視するポイントワイズ予測を行い、不安定性と不正確な予測をもたらす。
本稿では,動的システムのモデル化にPINNを再設計するフレームワークであるPiaNOを紹介する。
PIANOは自己回帰的に動作し、過去の予測を明示的に条件付けしている。
物理的制約を強制しながら、自己監督型のロールアウト機構を通じてトレーニングされる。
本稿では,PINNが時間的不安定性に悩まされているのに対して,IANOは自己回帰モデルを用いて安定性を達成していることを示す厳密な理論的解析を行う。
挑戦的な時間依存型PDEに関する大規模な実験は、PIANOが最先端の性能を達成し、既存の手法よりも精度と安定性を著しく向上することを示した。
PIANOは気象予報において既存の手法よりも優れていることを示す。
関連論文リスト
- Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
我々は物理符号化されたメッセージパッシンググラフネットワーク(PhyMPGN)という新しいグラフ学習手法を提案する。
我々は,GNNを数値積分器に組み込んで,与えられたPDEシステムに対する時間的時間的ダイナミクスの時間的行進を近似する。
PhyMPGNは、粗い非構造メッシュ上での様々なタイプの時間的ダイナミクスを正確に予測することができる。
論文 参考訳(メタデータ) (2024-10-02T08:54:18Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
等変性を維持しながら, 2階連続性をGNNに組み込む方法を示す。
また、SEGNOに関する理論的知見も提供し、隣接する状態間の一意の軌跡を学習できることを強調している。
我々のモデルは最先端のベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-08-25T07:15:58Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Physics Informed Neural Network for Dynamic Stress Prediction [10.588266927411434]
有限要素シミュレーションに基づいて, 応力分布の全列を予測するために, 物理インフォームドニューラルネットワーク(PINN)モデルを提案する。
自動微分を用いて、深層ニューラルネットワークの損失関数にPDEを埋め込み、測定やPDEからの情報を取り込む。
PINN-Stressモデルは、ほぼリアルタイムで応力分布の列を予測でき、PINNなしではモデルよりも良く一般化できる。
論文 参考訳(メタデータ) (2022-11-28T16:03:21Z) - Multi-resolution partial differential equations preserved learning
framework for spatiotemporal dynamics [11.981731023317945]
物理インフォームドディープラーニング(PiDL)は、物理原理をモデルに組み込むことによって、これらの課題に対処する。
我々は、ニューラルネットワークアーキテクチャに離散化された支配方程式を焼いて、物理の事前知識を活用することを提案する。
離散化されたPDEを畳み込み残差ネットワークを介して多分解能設定に埋め込むことにより、一般化可能性と長期予測を大幅に改善する。
論文 参考訳(メタデータ) (2022-05-09T01:27:58Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。