論文の概要: Frequency Response Identification of Low-Order Systems: Finite-Sample Analysis
- arxiv url: http://arxiv.org/abs/2508.17142v1
- Date: Sat, 23 Aug 2025 20:53:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.364721
- Title: Frequency Response Identification of Low-Order Systems: Finite-Sample Analysis
- Title(参考訳): 低次系の周波数応答同定:有限サンプル解析
- Authors: Arya Honarpisheh, Mario Sznaier,
- Abstract要約: 本稿では,低次システム学習のための周波数領域同定手法を提案する。
同定過程のサンプリング周波数の複雑さを上界に導出する。
サンプルの複雑さの詳細な分析と、その用語と依存関係の完全な解釈が提供される。
- 参考スコア(独自算出の注目度): 3.2084789957883033
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper proposes a frequency-domain system identification method for learning low-order systems. The identification problem is formulated as the minimization of the l2 norm between the identified and measured frequency responses, with the nuclear norm of the Loewner matrix serving as a regularization term. This formulation results in an optimization problem that can be efficiently solved using standard convex optimization techniques. We derive an upper bound on the sampled-frequency complexity of the identification process and subsequently extend this bound to characterize the identification error over all frequencies. A detailed analysis of the sample complexity is provided, along with a thorough interpretation of its terms and dependencies. Finally, the efficacy of the proposed method is demonstrated through an example, along with numerical simulations validating the growth rate of the sample complexity bound.
- Abstract(参考訳): 本稿では,低次システム学習のための周波数領域同定手法を提案する。
同定問題は、同定された周波数応答と測定された周波数応答の間のl2ノルムの最小化として定式化され、ローナー行列の核ノルムは正規化項として機能する。
この定式化は、標準凸最適化手法を用いて効率的に解ける最適化問題をもたらす。
同定過程のサンプリング周波数の複雑さに基づいて上界を導出し、その後、この境界を全周波数にわたって識別誤差を特徴付けるように拡張する。
サンプルの複雑さの詳細な分析と、その用語と依存関係の完全な解釈が提供される。
最後に,本手法の有効性を実例で示すとともに,サンプルの複雑性境界の成長速度を数値シミュレーションで検証した。
関連論文リスト
- Harmonic Path Integral Diffusion [0.4527270266697462]
本稿では,連続多変量確率分布から抽出する新しい手法を提案する。
本手法では,状態空間の起点を中心とするデルタ関数を$t=0$とし,ターゲット分布に$t=1$で変換する。
これらのアルゴリズムは他のサンプリング手法、特にシミュレートおよびパス積分サンプリングと対比し、解析制御、精度、計算効率の点でそれらの利点を強調した。
論文 参考訳(メタデータ) (2024-09-23T16:20:21Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
不均一な問題に対する近似メッセージパッシングアルゴリズム(AMP)を導出する。
特に,情報理論の閾値よりも大きい信号と雑音の比を必要とする既知のアルゴリズムが,ランダムよりも優れた処理を行うための統計的・計算的ギャップの存在を同定する。
論文 参考訳(メタデータ) (2023-02-13T19:57:17Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
本稿では、分散正規化損失最小化問題に対する2倍加速勾配降下法(ADSGD)を提案する。
まず、ADSGDが線形収束率を達成でき、全体的な計算複雑性を低減できることを示す。
論文 参考訳(メタデータ) (2022-08-11T22:27:22Z) - Iterative Adaptive Spectroscopy of Short Signals [0.1338174941551702]
ラムゼー干渉法に基づく適応周波数検出プロトコルを開発した。
ラムゼイ配列を強化し、センシング状態と読み出し状態の両方で高い忠実度で調製することにより、高精度を実現する。
論文 参考訳(メタデータ) (2022-04-10T18:07:50Z) - Infinite-Dimensional Sparse Learning in Linear System Identification [0.2867517731896504]
本稿では,原子ノルム正規化に基づく無限次元スパース学習アルゴリズムを提案する。
この問題の解決の難しさは、無限の原子モデルが存在するという事実にある。
論文 参考訳(メタデータ) (2022-03-28T13:18:48Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
フィルタ方程式は、数値天気予報、金融、工学など、多くの現実の応用において中心的な役割を果たす。
フィルタリング方程式の解を近似する古典的なアプローチの1つは、分割法と呼ばれるPDEにインスパイアされた方法を使うことである。
我々はこの手法をニューラルネットワーク表現と組み合わせて、信号プロセスの非正規化条件分布の近似を生成する。
論文 参考訳(メタデータ) (2022-01-10T11:01:36Z) - On Sparse High-Dimensional Graphical Model Learning For Dependent Time Series [12.94486861344922]
本稿では,スパース,高次元定常時系列の条件独立グラフ(CIG)を推定する問題を考察する。
スパースグループラッソに基づく周波数領域の定式化について述べる。
また,ベイズ情報基準に基づくチューニングパラメータの選択についても実験的に検討した。
論文 参考訳(メタデータ) (2021-11-15T16:52:02Z) - Towards Sample-Optimal Compressive Phase Retrieval with Sparse and
Generative Priors [59.33977545294148]
O(k log L)$サンプルは振幅に基づく経験損失関数を最小化する任意のベクトルに信号が近いことを保証するのに十分であることを示す。
この結果はスパース位相検索に適応し、基底信号が$s$-sparseおよび$n$-dimensionalである場合、$O(s log n)$サンプルは同様の保証に十分であることを示す。
論文 参考訳(メタデータ) (2021-06-29T12:49:54Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z) - The Simulator: Understanding Adaptive Sampling in the
Moderate-Confidence Regime [52.38455827779212]
エミュレータと呼ばれる適応サンプリングを解析するための新しい手法を提案する。
適切なログファクタを組み込んだトップk問題の最初のインスタンスベースの下位境界を証明します。
我々の新しい分析は、後者の問題に対するこの種の最初のエミュレータであるベストアームとトップkの識別に、シンプルでほぼ最適であることを示した。
論文 参考訳(メタデータ) (2017-02-16T23:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。