論文の概要: Is Artificial Intelligence Reshaping the Landscape of the International Academic Community of Geosciences?
- arxiv url: http://arxiv.org/abs/2508.20117v1
- Date: Thu, 21 Aug 2025 11:17:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-29 18:12:01.543555
- Title: Is Artificial Intelligence Reshaping the Landscape of the International Academic Community of Geosciences?
- Title(参考訳): 人工知能は地球科学の国際学術コミュニティの景観を変えるのか?
- Authors: Liang Li, Yuntian Li, Wenxin Zhao, Shan Ye, Yun Lu,
- Abstract要約: 人工知能(AI)は、近年、AI関連の科学出力が顕著に増加し、地球科学の研究を積極的に変革している。
我々は、開発途上国の地球科学者が、最近のAI for Science(AI4S)パラダイムにおいて、より良い可視性を得たことを観察することを奨励されている。
- 参考スコア(独自算出の注目度): 8.391049739588452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Through bibliometric analysis and topic modeling, we find that artificial intelligence (AI) is positively transforming geosciences research, with a notable increase in AI-related scientific output in recent years. We are encouraged to observe that earth scientists from developing countries have gained better visibility in the recent AI for Science (AI4S) paradigm and that AI is also improving the landscape of international collaboration in geoscience-related research.
- Abstract(参考訳): 文献分析とトピックモデリングにより、人工知能(AI)が地球科学の研究を積極的に変えており、近年、AI関連の科学的成果が顕著に増加していることが判明した。
我々は、開発途上国の地球科学者が、最近のAI for Science(AI4S)パラダイムにおいてよりよく見えるようになり、また、地球科学関連の研究における国際協力の展望も改善していることを観察することを奨励されている。
関連論文リスト
- From AI for Science to Agentic Science: A Survey on Autonomous Scientific Discovery [90.64813998433253]
エージェントAIは仮説生成、実験設計、実行、分析、反復的洗練の能力を示す。
この調査は、生命科学、化学、材料科学、物理学にまたがる自律的な科学的発見のドメイン指向のレビューを提供する。
論文 参考訳(メタデータ) (2025-08-18T05:25:54Z) - Scaling Laws in Scientific Discovery with AI and Robot Scientists [72.3420699173245]
自律的なジェネラリスト科学者(AGS)の概念は、エージェントAIとエンボディロボットを組み合わせて、研究ライフサイクル全体を自動化している。
AGSは科学的発見に必要な時間と資源を大幅に削減することを目指している。
これらの自律的なシステムが研究プロセスにますます統合されるにつれて、科学的な発見が新しいスケーリング法則に従うかもしれないという仮説を立てる。
論文 参考訳(メタデータ) (2025-03-28T14:00:27Z) - Unlocking the Potential of AI Researchers in Scientific Discovery: What Is Missing? [20.94708392671015]
AI4Scienceの総出版物のシェアは2024年の3.57%から2050年までに約25%になると予想しています。
我々は,AI研究者を科学的発見の最前線に位置づける構造的かつ行動可能な戦略を提案する。
論文 参考訳(メタデータ) (2025-03-05T09:29:05Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
多くの新しいAIモデルとツールが提案され、世界中の研究者や学者が研究をより効果的かつ効率的に実施できるようにすることを約束している。
これらのツールの欠点と誤用の可能性に関する倫理的懸念は、議論の中で特に顕著な位置を占める。
論文 参考訳(メタデータ) (2025-02-07T18:26:45Z) - Bridging AI and Science: Implications from a Large-Scale Literature Analysis of AI4Science [25.683422870223076]
本稿では,AI4Science文献の大規模解析を行う。
我々は,AI手法と科学的問題の主な相違点を定量的に強調する。
我々は,AIと科学コミュニティの協力を促進する可能性と課題について検討する。
論文 参考訳(メタデータ) (2024-11-27T00:40:51Z) - GeoAI in Social Science [0.9527350779226282]
GeoAI(Geospatial AI、地理空間的人工知能)は、人工知能(AI)、地理空間的ビッグデータ、そして膨大なコンピューティングパワーを活用して、高度な自動化と知能の問題を解決するエキサイティングな新しい分野である。
本稿では、社会科学研究におけるAIの進歩を概観し、GeoAIを用いて重要なデータと知識ギャップを埋める重要な進歩について述べる。
論文 参考訳(メタデータ) (2023-12-19T20:23:18Z) - Interpretable Geoscience Artificial Intelligence (XGeoS-AI): Application to Demystify Image Recognition [10.366695826805659]
本研究では,地球科学における画像認識の謎を明らかにするための,解釈可能な地球科学人工知能(XGeoS-AI)フレームワークを提案する。
XGeoS-AIフレームワークは、人間の視覚のメカニズムにヒントを得て、画像全体の局所領域からしきい値を生成し、認識を完了させる。
論文 参考訳(メタデータ) (2023-11-08T01:54:56Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
1960年には333の研究分野の14%がAIに関連していたが、1972年には全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
1960年には、333の研究分野の14%がAI(コンピュータ科学の多くの分野)に関連していたが、1972年までに全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
我々は、現在の急上昇の状況が異なっており、学際的AI応用が持続する可能性が高いと結論付けている。
論文 参考訳(メタデータ) (2023-06-15T14:08:07Z) - GeoAI at ACM SIGSPATIAL: The New Frontier of Geospatial Artificial
Intelligence Research [4.723592249469651]
本稿では,GeoAIオープン研究の方向性について再検討し,議論する。
このワークショップシリーズは、地質学者、コンピュータ科学者、エンジニア、起業家、意思決定者のためのネクサスを育ててきた。
論文 参考訳(メタデータ) (2022-10-20T18:02:17Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。