論文の概要: Statistics-Friendly Confidentiality Protection for Establishment Data, with Applications to the QCEW
- arxiv url: http://arxiv.org/abs/2509.01597v1
- Date: Mon, 01 Sep 2025 16:29:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.775723
- Title: Statistics-Friendly Confidentiality Protection for Establishment Data, with Applications to the QCEW
- Title(参考訳): 施設データに対する統計フレンドリな信頼保護とQCEWへの応用
- Authors: Kaitlyn Webb, Prottay Protivash, John Durrell, Daniell Toth, Aleksandra Slavković, Daniel Kifer,
- Abstract要約: 本稿では、政策立案者に対する解釈可能性に着目した、ビジネスデータのための新たな機密性フレームワークを提案する。
ノイズの多い問合せ回答を秘密保持マイクロデータに変換する際に生じる新たな課題を解析する。
- 参考スコア(独自算出の注目度): 39.69299537637253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Confidentiality for business data is an understudied area of disclosure avoidance, where legacy methods struggle to provide acceptable results. Modern formal privacy techniques designed for person-level data do not provide suitable confidentiality/utility trade-offs due to the highly skewed nature of business data and because extreme outlier records are often important contributors to query answers. In this paper, inspired by Gaussian Differential Privacy, we propose a novel confidentiality framework for business data with a focus on interpretability for policy makers. We propose two query-answering mechanisms and analyze new challenges that arise when noisy query answers are converted into confidentiality-preserving microdata. We evaluate our mechanisms on confidential Quarterly Census of Employment and Wages (QCEW) microdata and a public substitute dataset.
- Abstract(参考訳): ビジネスデータの信頼性は開示回避の未調査領域であり、レガシーメソッドが許容可能な結果を提供するのに苦労する。
個人レベルのデータ用に設計された現代的な形式的プライバシ技術は、高度に歪んだビジネスデータの性質と、極端な外れ値記録が、回答をクエリするための重要なコントリビュータであるために、適切な機密性/ユーティリティトレードオフを提供しない。
本稿では,ガウス微分プライバシーにヒントを得て,政策立案者に対する解釈可能性に着目した,ビジネスデータのための新たな機密性フレームワークを提案する。
本稿では、2つの問合せ回答機構を提案し、ノイズの多い問合せ回答を秘密保持マイクロデータに変換する際に生じる新たな課題を解析する。
本研究は,QCEW(Secretary Quarterly Census of Employment and Wages)マイクロデータと代用データセットについて検討する。
関連論文リスト
- MAGPIE: A dataset for Multi-AGent contextual PrIvacy Evaluation [54.410825977390274]
LLMエージェントのコンテキストプライバシを評価するための既存のベンチマークは、主にシングルターン、低複雑さタスクを評価する。
まず、15ドメインにわたる158のリアルタイムハイテイクシナリオからなるベンチマーク-MAGPIEを示す。
次に、コンテキスト的にプライベートなデータに対する理解と、ユーザのプライバシを侵害することなくコラボレーションする能力に基づいて、最先端のLCMを評価します。
論文 参考訳(メタデータ) (2025-06-25T18:04:25Z) - An applied Perspective: Estimating the Differential Identifiability Risk of an Exemplary SOEP Data Set [2.66269503676104]
基本的統計的クエリの集合に対して,リスクメトリックを効率的に計算する方法を示す。
実世界の科学的データセットに基づいた実証分析は、現実的な条件下でのリスクの計算方法に関する知識を拡大します。
論文 参考訳(メタデータ) (2024-07-04T17:50:55Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
統計開示制御は、機密情報を匿名化して暴露するリスクを最小限にすることを目的としている。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
論文 参考訳(メタデータ) (2023-12-19T04:23:23Z) - $\alpha$-Mutual Information: A Tunable Privacy Measure for Privacy
Protection in Data Sharing [4.475091558538915]
本稿では, 有基の$alpha$-Mutual Informationを調整可能なプライバシ尺度として採用する。
我々は、プライバシ保護を提供するためにオリジナルのデータを操作するための一般的な歪みに基づくメカニズムを定式化する。
論文 参考訳(メタデータ) (2023-10-27T16:26:14Z) - Summary Statistic Privacy in Data Sharing [23.50797952699759]
本研究では,データ配信の要約統計を明らかにすることなく,データ保持者が受信者とデータを共有したい状況について検討する。
このようなメカニズムのプライバシーリスクを定量化するための指標である統計プライバシーの要約を提案する。
提案した量子化メカニズムは、代替プライバシメカニズムよりも優れたプライバシー歪曲トレードオフを実現する。
論文 参考訳(メタデータ) (2023-03-03T15:29:19Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Releasing survey microdata with exact cluster locations and additional
privacy safeguards [77.34726150561087]
本稿では,プライバシ保護を付加した独自のマイクロデータの有用性を活用した,代替的なマイクロデータ配信戦略を提案する。
当社の戦略は, 再識別の試みにおいても, 任意の属性に対する再識別リスクを60~80%削減する。
論文 参考訳(メタデータ) (2022-05-24T19:37:11Z) - On the Privacy-Utility Tradeoff in Peer-Review Data Analysis [34.0435377376779]
ピアレビューの改善に関する研究における大きな障害は、ピアレビューデータの利用不可能である。
我々は、特定の会議のピアレビューデータのプライバシー保護のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-29T21:08:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。