論文の概要: uGMM-NN: Univariate Gaussian Mixture Model Neural Network
- arxiv url: http://arxiv.org/abs/2509.07569v1
- Date: Tue, 09 Sep 2025 10:13:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-10 14:38:27.262198
- Title: uGMM-NN: Univariate Gaussian Mixture Model Neural Network
- Title(参考訳): uGMM-NN:一変量ガウス混合モデルニューラルネットワーク
- Authors: Zakeria Sharif Ali,
- Abstract要約: uGMM-NNは、ディープネットワークの計算ユニットに直接確率論的推論を組み込む新しいニューラルネットワークである。
従来のマルチ層パーセプトロンと比較して,uGMM-NNは競争力のある識別性能が得られることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces the Univariate Gaussian Mixture Model Neural Network (uGMM-NN), a novel neural architecture that embeds probabilistic reasoning directly into the computational units of deep networks. Unlike traditional neurons, which apply weighted sums followed by fixed nonlinearities, each uGMM-NN node parameterizes its activations as a univariate Gaussian mixture, with learnable means, variances, and mixing coefficients. This design enables richer representations by capturing multimodality and uncertainty at the level of individual neurons, while retaining the scalability of standard feedforward networks. We demonstrate that uGMM-NN can achieve competitive discriminative performance compared to conventional multilayer perceptrons, while additionally offering a probabilistic interpretation of activations. The proposed framework provides a foundation for integrating uncertainty-aware components into modern neural architectures, opening new directions for both discriminative and generative modeling.
- Abstract(参考訳): 本稿では,深層ネットワークの計算単位に直接確率論的推論を組み込む新しいニューラルネットワークであるUnivariate Gaussian Mixture Model Neural Network (uGMM-NN)を紹介する。
重み付けされた和が続く従来のニューロンとは異なり、各uGMM-NNノードは、その活性化を学習可能な手段、分散、混合係数で単変量ガウス混合としてパラメータ化する。
この設計により、標準フィードフォワードネットワークのスケーラビリティを維持しつつ、個々のニューロンレベルでのマルチモーダル性と不確実性を捕捉し、よりリッチな表現を可能にする。
我々は,uGMM-NNが従来の多層パーセプトロンと比較して,競争力のある識別性能を実現すると同時に,アクティベーションの確率論的解釈を提供することを示した。
提案するフレームワークは、不確実性を認識したコンポーネントを現代のニューラルアーキテクチャに統合するための基盤を提供し、差別的および生成的モデリングのための新しい方向性を開放する。
関連論文リスト
- Differentiable neural network representation of multi-well, locally-convex potentials [0.0]
log-sum-exponential input convex Neural Network (LSE-ICNN) に基づく微分可能・凸定式化を提案する。
LSE-ICNNは、盆地内の凸性を保ち、勾配に基づく学習と推論を可能にする滑らかなサロゲートを提供する。
メカノケミカル位相変換, ミクロ構造弾性不安定性, 保守的生物学的遺伝子回路, マルチモーダル確率分布の変動推論など, 様々な領域におけるLSE-ICNNの汎用性を示す。
論文 参考訳(メタデータ) (2025-06-06T05:37:49Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Generative Neural Fields by Mixtures of Neural Implicit Functions [43.27461391283186]
本稿では,暗黙的ベースネットワークの線形結合によって表現される生成的ニューラルネットワークを学習するための新しいアプローチを提案する。
提案アルゴリズムは,メタラーニングや自動デコーディングのパラダイムを採用することにより,暗黙のニューラルネットワーク表現とその係数を潜在空間で学習する。
論文 参考訳(メタデータ) (2023-10-30T11:41:41Z) - Satellite Anomaly Detection Using Variance Based Genetic Ensemble of
Neural Networks [7.848121055546167]
複数のリカレントニューラルネットワーク(RNN)からの予測の効率的なアンサンブルを用いる。
予測のために、各RNNモデルに対して最適な構造を構築する遺伝的アルゴリズム(GA)によって、各RNNを導出する。
本稿では,BNNの近似版としてモンテカルロ(MC)ドロップアウトを用いる。
論文 参考訳(メタデータ) (2023-02-10T22:09:00Z) - Interrelation of equivariant Gaussian processes and convolutional neural
networks [77.34726150561087]
現在、ニューラルネットワーク(NN)とガウス過程(GP)の関係に基づく機械学習(ML)には、かなり有望な新しい傾向がある。
本研究では、ベクトル値のニューロン活性化を持つ2次元ユークリッド群とそれに対応する独立に導入された同変ガウス過程(GP)との関係を確立する。
論文 参考訳(メタデータ) (2022-09-17T17:02:35Z) - Universal approximation property of invertible neural networks [76.95927093274392]
Invertible Neural Network (INN) は、設計によって可逆性を持つニューラルネットワークアーキテクチャである。
その可逆性とヤコビアンのトラクタビリティのおかげで、IGNは確率的モデリング、生成的モデリング、表現的学習など、さまざまな機械学習応用がある。
論文 参考訳(メタデータ) (2022-04-15T10:45:26Z) - SPINN: Sparse, Physics-based, and Interpretable Neural Networks for PDEs [0.0]
Sparse, Physics-based, and Interpretable Neural Networks (SPINN) のクラスを導入し,一般微分方程式と部分微分方程式を解く。
従来のPDEのソリューションのメッシュレス表現を特別なスパースディープニューラルネットワークとして再解釈することにより、解釈可能なスパースニューラルネットワークアーキテクチャのクラスを開発する。
論文 参考訳(メタデータ) (2021-02-25T17:45:50Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
本稿では,最先端の結果を生み出すスパイクニューラルネットワークのアンサンブルを構築する方法について述べる。
MNIST, NMNIST, DVS Gestureデータセットの分類精度は98.71%, 100.0%, 99.09%である。
我々は、スパイキングニューラルネットワークをGLM予測器として形式化し、ターゲットドメインに適した表現を識別する。
論文 参考訳(メタデータ) (2020-10-15T17:45:18Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。