論文の概要: Assessing the Limits of Graph Neural Networks for Vapor-Liquid Equilibrium Prediction: A Cryogenic Mixture Case Study
- arxiv url: http://arxiv.org/abs/2509.10565v1
- Date: Wed, 10 Sep 2025 16:10:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 17:26:22.67048
- Title: Assessing the Limits of Graph Neural Networks for Vapor-Liquid Equilibrium Prediction: A Cryogenic Mixture Case Study
- Title(参考訳): 気液平衡予測のためのグラフニューラルネットワークの限界評価:極低温混合実験
- Authors: Aryan Gupta,
- Abstract要約: 本研究では、GERG-2008/CoolPropデータに基づいてトレーニングされた構造対応グラフニューラルネットワーク(GNN; DimeNet++)が、状態方程式(EoS)の実用的なサロゲートとして機能するかどうかを問う。
我々は90~200K以上の3次データセットと100バーへの圧力を生成し、15%密度フィルタ(5,200状態を1,516に還元する)でキュレートし、各状態と軽量な分子力学スナップショットを組み合わせて構造特性の供給を行う。
我々は、構成上、この研究におけるサロゲートは、VLEに対して平衡対応可能ではなく、実行時利益を提供しない、と結論づける。
- 参考スコア(独自算出の注目度): 3.765010805872486
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and fast thermophysical models are needed to embed vapor-liquid equilibrium (VLE) calculations in design, optimization, and control loops for cryogenic mixtures. This study asks whether a structure-aware graph neural network (GNN; DimeNet++) trained on GERG-2008/CoolProp data can act as a practical surrogate for an equation of state (EoS). We generate a ternary dataset over 90-200 K and pressures to 100 bar, curate it with a 15% density filter (reducing 5,200 states to 1,516), and pair each state with a lightweight molecular-dynamics snapshot to supply structural features. The model is trained in two stages; pretraining on residual Helmholtz energy followed by pressure fine-tuning with a stability penalty; and evaluated via single-phase interpolation tests, solver-free derivative-quality diagnostics, an audited VLE driver, and a latency benchmark. Within its regime, the GNN interpolates single-phase properties reasonably well; however, the VLE driver accepts no GNN equilibria on tested binaries (all plotted VLE points are CoolProp fallback or the solver fails), and diagnostic probes reveal jagged P(V|T) paths and thermal-stability flags concentrated in dense/cold regions, indicating insufficient derivative smoothness/consistency for robust equilibrium solving. An end-to-end timing comparison shows no single-phase speed advantage relative to CoolProp (tens of milliseconds vs sub-millisecond). We conclude that, as configured, the surrogate in this study is not solver-ready for VLE and offers no runtime benefit; its value is methodological, delineating failure modes and pointing to remedies such as physics-informed training signals and targeted coverage near phase boundaries.
- Abstract(参考訳): 低温混合物の設計、最適化、制御ループに気液平衡(VLE)計算を埋め込むには、精密で高速な熱物理学モデルが必要である。
本研究では、GERG-2008/CoolPropデータに基づいてトレーニングされた構造対応グラフニューラルネットワーク(GNN; DimeNet++)が、状態方程式(EoS)の実用的なサロゲートとして機能するかどうかを問う。
我々は90~200K以上の3次データセットと100バーへの圧力を生成し、15%密度フィルタ(5,200状態を1,516に還元する)でキュレートし、各状態と軽量な分子力学スナップショットを組み合わせて構造特性の供給を行う。
このモデルは, 残留ヘルムホルツエネルギーと圧力微調整, 安定性ペナルティの2段階で訓練され, 単相補間試験, ソルバフリーデリバティブ品質診断, 監査VLEドライバ, 待ち時間ベンチマークによって評価された。
しかし、VLEドライバは試験されたバイナリ上でGNN平衡を受け付けない(全てのプロットされたVLEポイントはクールプロップフォールバックかソルバ失敗か)ため、診断プローブは、高密度/低温領域に集中したジャッジされたP(V|T)パスと熱安定性フラグを明らかにし、堅牢な平衡解には不完全な微分滑らかさ/一貫性を示す。
エンドツーエンドのタイミング比較では、CoolProp(ミリ秒とサブミリ秒)と比較してシングルフェーズの速度優位性は示されていない。
本研究のサロゲートは, 構成上, VLEでは解決可能ではなく, 実行時利益が得られない。その価値は, メソジカルで, 故障モードを指示し, 物理インフォームドトレーニング信号や, 位相境界近傍の対象範囲などの対策を指している。
関連論文リスト
- Potential failures of physics-informed machine learning in traffic flow modeling: theoretical and experimental analysis [5.055539099879598]
本研究では,物理インフォームド・機械学習 (PIML) がマクロな交通流モデリングに失敗する原因について検討する。
障害を、PIMLモデルが純粋にデータ駆動と純粋に物理ベースラインの両方を所定の閾値で下回る場合として定義する。
LWRベースのPIMLが高解像度のデータでもARZベースのPIMLより優れている理由を説明する。
論文 参考訳(メタデータ) (2025-05-16T17:55:06Z) - Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data [0.0]
本稿では,全原子ボルツマン分布を直接対象とする粗粒化のためのデータフリー生成フレームワークを提案する。
完全な潜在空間から全原子構成空間への潜在的に学習可能な単射写像は、分子構造の自動的かつ正確な再構築を可能にする。
論文 参考訳(メタデータ) (2025-04-29T17:05:27Z) - Robust Fine-tuning of Zero-shot Models via Variance Reduction [56.360865951192324]
微調整ゼロショットモデルの場合、このデシドラトゥムは細調整モデルで、分布内(ID)と分布外(OOD)の両方で優れる。
トレードオフを伴わずに最適なIDとOODの精度を同時に達成できるサンプルワイズアンサンブル手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T13:13:39Z) - Entanglement Distribution Delay Optimization in Quantum Networks with Distillation [51.53291671169632]
量子ネットワーク(QN)は、分散量子コンピューティングとセンシングアプリケーションを実現するために絡み合った状態を分散する。
QSリソース割り当てフレームワークは、エンド・ツー・エンド(e2e)の忠実度を高め、最小レートと忠実度を満たすために提案される。
論文 参考訳(メタデータ) (2024-05-15T02:04:22Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
Rayleigh-B'enard乱流流に対するPINNのサーロゲートモデルの使用を検討する。
標準ピンの精度が低いゾーンであるトレーニング境界に近い正規化として、どのように機能するかを示す。
50億のDNS座標全体のサロゲートの予測精度は、相対的なL2ノルムで[0.3% -- 4%]の範囲のすべてのフロー変数のエラーをもたらします。
論文 参考訳(メタデータ) (2021-03-05T09:48:57Z) - A deep learning-based ODE solver for chemical kinetics [6.146046338698173]
この研究はDeepCombustion0.0と呼ばれる深層学習に基づく数値計算法を提案し、硬い常微分方程式系を解く。
54種を含むDME/空気混合物の均一な自己着火は、アルゴリズムの有効性と精度を示す例として採用されている。
論文 参考訳(メタデータ) (2020-11-24T02:44:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。