論文の概要: Robust Physics Discovery from Highly Corrupted Data: A PINN Framework Applied to the Nonlinear Schrödinger Equation
- arxiv url: http://arxiv.org/abs/2601.04176v1
- Date: Wed, 07 Jan 2026 18:43:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-09 02:15:23.718403
- Title: Robust Physics Discovery from Highly Corrupted Data: A PINN Framework Applied to the Nonlinear Schrödinger Equation
- Title(参考訳): 高破壊データからのロバスト物理発見:非線形シュレーディンガー方程式に適用したPINNフレームワーク
- Authors: Pietro de Oliveira Esteves,
- Abstract要約: 重騒音条件下でのNVIDIA Schrodinger Equation(LSEN)から物理パラメータを復元できるディープラーニングフレームワークを実証する。
相対誤差が0.2%未満の非線形係数ベータを500個のスパースサンプルデータポイントのみを用いて再構成する。
その結果,物理学に基づく正則化は高い測定の不確実性に対して有効なフィルタとして機能することが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate a deep learning framework capable of recovering physical parameters from the Nonlinear Schrodinger Equation (NLSE) under severe noise conditions. By integrating Physics-Informed Neural Networks (PINNs) with automatic differentiation, we achieve reconstruction of the nonlinear coefficient beta with less than 0.2 percent relative error using only 500 sparse, randomly sampled data points corrupted by 20 percent additive Gaussian noise, a regime where traditional finite difference methods typically fail due to noise amplification in numerical derivatives. We validate the method's generalization capabilities across different physical regimes (beta between 0.5 and 2.0) and varying data availability (between 100 and 1000 training points), demonstrating consistent sub-1 percent accuracy. Statistical analysis over multiple independent runs confirms robustness (standard deviation less than 0.15 percent for beta equals 1.0). The complete pipeline executes in approximately 80 minutes on modest cloud GPU resources (NVIDIA Tesla T4), making the approach accessible for widespread adoption. Our results indicate that physics-based regularization acts as an effective filter against high measurement uncertainty, positioning PINNs as a viable alternative to traditional optimization methods for inverse problems in spatiotemporal dynamics where experimental data is scarce and noisy. All code is made publicly available to facilitate reproducibility.
- Abstract(参考訳): 雑音条件下での非線形シュロディンガー方程式(NLSE)から物理パラメータを復元できるディープラーニングフレームワークを実証する。
物理インフォームドニューラルネットワーク (PINN) を自動微分と組み合わせることで, 従来の有限差分法が数値微分の雑音増幅に起因して失敗する手法であるガウス雑音によって崩壊した500個のスパースなランダムサンプリングデータポイントを用いて, 相対誤差が0.2%未満の非線形係数ベータの再構成を実現する。
本手法は,異なる物理状態(0.5から2.0の間)と異なるデータ可用性(100から1000のトレーニングポイントの間)にまたがる一般化能力を検証し,一貫したサブ1パーセントの精度を示す。
複数の独立ランに対する統計分析では、堅牢性が確認されている(標準偏差は0.15%未満でベータは1.0に等しい)。
完全なパイプラインは、控えめなクラウドGPUリソース(NVIDIA Tesla T4)で約80分で実行される。
この結果から,実験データが少ない時空間力学における逆問題に対する従来の最適化手法の代替として,PINNは有効なフィルタとして機能することが示唆された。
すべてのコードは、再現性を促進するために公開されています。
関連論文リスト
- Physics-informed Neural Operator Learning for Nonlinear Grad-Shafranov Equation [18.564353542797946]
磁気閉じ込め核融合では、Grad-Shafranov方程式(GSE)の迅速かつ正確な解はリアルタイムプラズマ制御と解析に不可欠である。
従来の数値解法は精度が高く、計算は禁じられているが、データ駆動サロゲートは素早く推論するが、物理法則を強制せず、トレーニング分布をはるかに越えて一般化することができない。
本稿では, GSE 解演算子を直接学習する物理インフォームド・ニューラル演算子 (PINO) について述べる。
論文 参考訳(メタデータ) (2025-11-24T13:46:38Z) - Discovering Governing Equations in the Presence of Uncertainty [11.752763800308276]
本研究では, 力学系を基礎とする支配方程式を一貫して発見する鍵として, 測定ノイズとともに, システムの変動性を考慮した説明が重要であることを理論的に論じる。
SIPは、スパース同定ダイナミクス(SINDy)とその変種に対する平均82%の正方程式を一貫して同定することを示した。
論文 参考訳(メタデータ) (2025-07-13T18:31:25Z) - NeuralSurv: Deep Survival Analysis with Bayesian Uncertainty Quantification [42.418429168532406]
我々はベイズの不確実性定量化を取り入れた最初のディープサバイバルモデルであるNeuralSurvを紹介する。
モデルサイズを線形にスケールする座標アセット更新を用いた平均場変分アルゴリズムを導入する。
実験では、NeuralSurvは最先端のディープサバイバルモデルよりも優れたキャリブレーションを提供する。
論文 参考訳(メタデータ) (2025-05-16T09:53:21Z) - DispFormer: A Pretrained Transformer Incorporating Physical Constraints for Dispersion Curve Inversion [56.64622091009756]
本研究では、レイリー波位相と群分散曲線からプロファイルインバージョンを$v_s$とするトランスフォーマーベースのニューラルネットワークであるDispFormerを紹介する。
DispFormerは各期間に分散データを個別に処理し、ネットワークの変更やデータセットのトレーニングとテストの厳格な調整を必要とせずに、さまざまな長さを処理できる。
論文 参考訳(メタデータ) (2025-01-08T09:08:24Z) - Bayesian optimized deep ensemble for uncertainty quantification of deep neural networks: a system safety case study on sodium fast reactor thermal stratification modeling [10.055838489452817]
ディープ・アンサンブルはディープ・ニューラルネットワーク(DNN)における不確実性定量化(UQ)のための効率的でスケーラブルな方法である
本稿では,ベイズ最適化(BO)とBODEと呼ばれるDDEを組み合わせることによって,予測精度とUQを両立させる手法を提案する。
計算流体力学(CFD)データに基づいて学習したDensely Connected Convolutional Neural Network (DCNN) のケーススタディにBODEを適用し, 高速炉熱成層モデルにおける渦粘度を予測する。
論文 参考訳(メタデータ) (2024-12-11T21:06:50Z) - Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
本研究では,単一のビデオから既知の連続制御方程式の物理パラメータを推定する教師なし手法を提案する。
Delfys75は5種類の動的システムのための75本のビデオからなる実世界のデータセットだ。
論文 参考訳(メタデータ) (2024-10-02T09:44:54Z) - RAMP-Net: A Robust Adaptive MPC for Quadrotors via Physics-informed
Neural Network [6.309365332210523]
本稿では、単純なODEとデータの一部をトレーニングしたニューラルネットワークを用いて、PINN(RAMP-Net)を介してロバスト適応MPCフレームワークを提案する。
我々は,SOTA回帰に基づく2つのMPC法と比較して,0.5~1.75m/sの追跡誤差を7.8%から43.2%,8.04%から61.5%削減した。
論文 参考訳(メタデータ) (2022-09-19T16:11:51Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
Rayleigh-B'enard乱流流に対するPINNのサーロゲートモデルの使用を検討する。
標準ピンの精度が低いゾーンであるトレーニング境界に近い正規化として、どのように機能するかを示す。
50億のDNS座標全体のサロゲートの予測精度は、相対的なL2ノルムで[0.3% -- 4%]の範囲のすべてのフロー変数のエラーをもたらします。
論文 参考訳(メタデータ) (2021-03-05T09:48:57Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。