論文の概要: EvoBrain: Dynamic Multi-channel EEG Graph Modeling for Time-evolving Brain Network
- arxiv url: http://arxiv.org/abs/2509.15857v1
- Date: Fri, 19 Sep 2025 10:47:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-22 18:18:11.131126
- Title: EvoBrain: Dynamic Multi-channel EEG Graph Modeling for Time-evolving Brain Network
- Title(参考訳): EvoBrain: 時間進化脳ネットワークのための動的マルチチャネル脳波グラフモデリング
- Authors: Rikuto Kotoge, Zheng Chen, Tasuku Kimura, Yasuko Matsubara, Takufumi Yanagisawa, Haruhiko Kishima, Yasushi Sakurai,
- Abstract要約: 本稿では,Laplacian Positionalによって強化されたGCNと2ストリームのMambaアーキテクチャを統合した新しい発作検出モデルであるEvoBrainを提案する。
本研究の貢献は,AUROCを23%,F1スコアを30%向上させる新鮮で効率的なモデルと,動的GNNベースラインとの比較,および,難易度早期発作予測タスクにおける本手法の広範な評価である。
- 参考スコア(独自算出の注目度): 14.033904968406086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic GNNs, which integrate temporal and spatial features in Electroencephalography (EEG) data, have shown great potential in automating seizure detection. However, fully capturing the underlying dynamics necessary to represent brain states, such as seizure and non-seizure, remains a non-trivial task and presents two fundamental challenges. First, most existing dynamic GNN methods are built on temporally fixed static graphs, which fail to reflect the evolving nature of brain connectivity during seizure progression. Second, current efforts to jointly model temporal signals and graph structures and, more importantly, their interactions remain nascent, often resulting in inconsistent performance. To address these challenges, we present the first theoretical analysis of these two problems, demonstrating the effectiveness and necessity of explicit dynamic modeling and time-then-graph dynamic GNN method. Building on these insights, we propose EvoBrain, a novel seizure detection model that integrates a two-stream Mamba architecture with a GCN enhanced by Laplacian Positional Encoding, following neurological insights. Moreover, EvoBrain incorporates explicitly dynamic graph structures, allowing both nodes and edges to evolve over time. Our contributions include (a) a theoretical analysis proving the expressivity advantage of explicit dynamic modeling and time-then-graph over other approaches, (b) a novel and efficient model that significantly improves AUROC by 23% and F1 score by 30%, compared with the dynamic GNN baseline, and (c) broad evaluations of our method on the challenging early seizure prediction tasks.
- Abstract(参考訳): 脳波(EEG)データに時間的・空間的特徴を統合する動的GNNは、発作検出の自動化に大きな可能性を示している。
しかし、発作や非青少年のような脳の状態を表現するのに必要な基礎となるダイナミクスを完全に捉えることは、未だに非自明な課題であり、2つの根本的な課題を提示している。
第一に、既存の動的GNN法は時間的に固定された静的グラフ上に構築されており、発作進行中の脳の接続性の進化を反映していない。
第二に、時相信号とグラフ構造を協調的にモデル化する現在の取り組みは、その相互作用がまだ初期段階であり、しばしば一貫性のないパフォーマンスをもたらす。
これらの課題に対処するため、これらの2つの問題を理論的に解析し、明示的動的モデリングと時間-テーマグラフ動的GNN法の有効性と必要性を示す。
これらの知見に基づいて,Laplacian Positional Encodingによって強化されたGCNと2ストリームのMambaアーキテクチャを統合した新しい発作検出モデルであるEvoBrainを提案する。
さらに、EvoBrainは明示的な動的グラフ構造を導入し、ノードとエッジの両方が時間とともに進化できるようにしている。
コントリビューションには
(a)他のアプローチに対する明示的動的モデリングと時空グラフの表現性を証明した理論的解析。
b)動的GNNベースラインと比較してAUROCを23%、F1スコアを30%改善する新規で効率的なモデル。
(c) 早期発作予測課題に対する本手法の広範な評価を行った。
関連論文リスト
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューロンからインスピレーションを得て、脳に似た計算の現実的なモデルを作成する。
既存のほとんどのSNNは、マルコフ特性を持つ一階常微分方程式(ODE)によってモデル化された、神経細胞膜電圧ダイナミクスの単一時間定数を仮定している。
本研究では, 膜電圧およびスパイク列車の長期依存性を分数次力学により捉えるフラクタルSPIKE微分方程式ニューラルネットワーク (fspikeDE) を提案する。
論文 参考訳(メタデータ) (2025-07-22T18:20:56Z) - Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
逐次変分自動エンコーダであるLangevinFlowを導入し、潜伏変数の時間的進化をアンダーダム化したLangevin方程式で制御する。
われわれのアプローチは、慣性、減衰、学習されたポテンシャル関数、力などの物理的事前を組み込んで、ニューラルネットワークにおける自律的および非自律的プロセスの両方を表現する。
本手法は,ロレンツ誘引器によって生成される合成神経集団に対する最先端のベースラインより優れる。
論文 参考訳(メタデータ) (2025-07-15T17:57:48Z) - Graph-Based Representation Learning of Neuronal Dynamics and Behavior [2.3859858429583665]
本稿では,時間変動ニューロン接続をモデル化する新しいフレームワークTAVRNNを紹介する。
TAVRNNは、解釈可能な集団レベルの表現を維持しながら、単一単位レベルで潜伏ダイナミクスを学習する。
TAVRNNは,(1)自由行動ラットの電気生理学的データ,(2)到達作業中の霊長類体性感覚皮質記録,(3)仮想ゲーム環境と相互作用するDishBrainプラットフォーム内の生物学的ニューロンの3つのデータセットで検証した。
論文 参考訳(メタデータ) (2024-10-01T13:19:51Z) - Unveiling the Potential of Spiking Dynamics in Graph Representation Learning through Spatial-Temporal Normalization and Coding Strategies [15.037300421748107]
スパイキングニューラルネットワーク(SNN)は、ニューロンのエネルギー効率と事象駆動処理を再現する可能性から、かなりの関心を集めている。
本研究は,グラフ表現学習の強化におけるスパイキングダイナミクスの特質とメリットについて考察する。
スパイキングダイナミクスを取り入れたスパイクに基づくグラフニューラルネットワークモデルを提案し,新しい時空間特徴正規化(STFN)技術により強化した。
論文 参考訳(メタデータ) (2024-07-30T02:53:26Z) - Dynamic Graph Unlearning: A General and Efficient Post-Processing Method via Gradient Transformation [24.20087360102464]
動的グラフアンラーニングを初めて研究し、DGNNアンラーニングを実装するための効率的で効率的で汎用的で後処理手法を提案する。
提案手法は,将来的な未学習要求を処理できる可能性があり,性能が大幅に向上する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - A survey of dynamic graph neural networks [26.162035361191805]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから効果的にマイニングし学習するための強力なツールとして登場した。
本稿では,基本的な概念,鍵となる技術,そして最先端の動的GNNモデルについて概観する。
論文 参考訳(メタデータ) (2024-04-28T15:07:48Z) - SiGNN: A Spike-induced Graph Neural Network for Dynamic Graph Representation Learning [42.716744098170835]
本研究では,動的グラフ上での時空間表現の強化を学習するための,スパイク誘発グラフニューラルネットワーク(SiGNN)という新しいフレームワークを提案する。
TA機構を利用して、SiGNNはSNNの時間的ダイナミクスを効果的に活用するだけでなく、スパイクのバイナリの性質によって課される表現的制約を積極的に回避する。
実世界の動的グラフデータセットに対する大規模な実験は、ノード分類タスクにおけるSiGNNの優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-11T05:19:43Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
内在的なダイナミクスを持つ生物学的スパイキングニューロンは、脳の強力な表現力と学習能力を持つ。
ユークリッド空間タスクを処理するためのスパイクニューラルネットワーク(SNN)の最近の進歩にもかかわらず、非ユークリッド空間データの処理においてSNNを活用することは依然として困難である。
本稿では,グラフ学習のためのSNNの直接学習を可能にする,一般的なスパイクに基づくモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:20:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。