論文の概要: Bayesian Transfer Operators in Reproducing Kernel Hilbert Spaces
- arxiv url: http://arxiv.org/abs/2509.22482v1
- Date: Fri, 26 Sep 2025 15:31:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 20:57:54.548164
- Title: Bayesian Transfer Operators in Reproducing Kernel Hilbert Spaces
- Title(参考訳): 核ヒルベルト空間の再生におけるベイズ移動作用素
- Authors: Septimus Boshoff, Sebastian Peitz, Stefan Klus,
- Abstract要約: カーネルベースのクープマンアルゴリズムを用いて,2つの分散問題を緩和する方法を示す。
まず、疎結合性:ほとんどのカーネルメソッドはスケーラビリティが良くなく、現実的になるには近似が必要である。
計算要求を低減できるだけでなく、センサノイズに対するレジリエンスの向上も示している。
- 参考スコア(独自算出の注目度): 1.2120041613482557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Koopman operator, as a linear representation of a nonlinear dynamical system, has been attracting attention in many fields of science. Recently, Koopman operator theory has been combined with another concept that is popular in data science: reproducing kernel Hilbert spaces. We follow this thread into Gaussian process methods, and illustrate how these methods can alleviate two pervasive problems with kernel-based Koopman algorithms. The first being sparsity: most kernel methods do not scale well and require an approximation to become practical. We show that not only can the computational demands be reduced, but also demonstrate improved resilience against sensor noise. The second problem involves hyperparameter optimization and dictionary learning to adapt the model to the dynamical system. In summary, the main contribution of this work is the unification of Gaussian process regression and dynamic mode decomposition.
- Abstract(参考訳): 非線形力学系の線形表現としてのクープマン作用素は多くの科学分野において注目を集めている。
近年、クープマン作用素理論とデータサイエンスで人気のある別の概念が組み合わさって、カーネルヒルベルト空間を再現している。
このスレッドをガウスのプロセス手法に追従し、カーネルベースのクープマンアルゴリズムを用いて、これらの手法が2つの広汎な問題を緩和する方法について説明する。
まず、疎結合性:ほとんどのカーネルメソッドはスケーラビリティが良くなく、現実的になるには近似が必要である。
計算要求を低減できるだけでなく、センサノイズに対するレジリエンスの向上も示している。
第2の問題は、ハイパーパラメータ最適化と辞書学習によって、モデルを動的システムに適応させることである。
要約すると、この研究の主な貢献はガウス過程の回帰と動的モード分解の統合である。
関連論文リスト
- Learning dissipative Hamiltonian dynamics with reproducing kernel Hilbert spaces and random Fourier features [0.7510165488300369]
本稿では,限定的かつノイズの多いデータセットから散逸的ハミルトン力学を学習するための新しい手法を提案する。
この手法の性能は、2つの散逸するハミルトン系のシミュレーションで検証される。
論文 参考訳(メタデータ) (2024-10-24T11:35:39Z) - Linear quadratic control of nonlinear systems with Koopman operator learning and the Nyström method [16.0198373552099]
計算量を大幅に削減するために,ランダムな部分空間をどのように利用できるかを示す。
我々の主な技術的貢献は、Nystr"om近似の効果に関する理論的保証を導出することである。
論文 参考訳(メタデータ) (2024-03-05T09:28:40Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - An Introduction to Kernel and Operator Learning Methods for
Homogenization by Self-consistent Clustering Analysis [0.48747801442240574]
本稿では,演算子学習パラダイムの数学的基盤に関する詳細な分析について述べる。
提案したカーネル演算子学習法は,グラフカーネルネットワークを用いて,マルチスケール均質化のための機械的縮小順序法を考案する。
論文 参考訳(メタデータ) (2022-12-01T02:36:16Z) - Learning "best" kernels from data in Gaussian process regression. With
application to aerodynamics [0.4588028371034406]
本稿では,ガウス過程の回帰/クリギングサロゲートモデリング手法におけるカーネルの選択/設計アルゴリズムを紹介する。
アルゴリズムの最初のクラスはカーネルフローであり、機械学習の分類の文脈で導入された。
アルゴリズムの第2のクラスはスペクトル核リッジ回帰と呼ばれ、近似される関数のノルムが最小となるような「最良の」カーネルを選択することを目的としている。
論文 参考訳(メタデータ) (2022-06-03T07:50:54Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
本稿では,カーネル手法のコンテキストにおいて,現象を正確に特徴付けることができることを示す。
分離可能なヒルベルト空間における2次対象の最小化を考慮し、早期停止の場合、学習速度の選択が得られた解のスペクトル分解に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2022-02-28T13:01:04Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
我々はガウス過程の適用性を高める技術を開発した。
この観点から構築した効率的な近似を幅広く導入する。
非ユークリッド空間上のガウス過程モデルの集合を開発する。
論文 参考訳(メタデータ) (2022-02-22T01:42:57Z) - Neural Fields as Learnable Kernels for 3D Reconstruction [101.54431372685018]
本稿では,学習したカーネルリッジの回帰に基づいて,暗黙の3次元形状を再構成する手法を提案する。
本手法は,3次元オブジェクトと大画面をスパース指向の点から再構成する際の最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2021-11-26T18:59:04Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
Koopman演算子は非線形系の線形記述を可能にする数学的ツールである。
本稿では,その核となる部分を同一フレームワークのデュアルバージョンとして捉え,それらをカーネルフレームワークに組み込む。
カーネルメソッドとKoopman演算子との強力なリンクを確立し、Kernel関数を通じて後者を推定する。
論文 参考訳(メタデータ) (2021-03-25T11:08:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。