論文の概要: Physics-Informed Inductive Biases for Voltage Prediction in Distribution Grids
- arxiv url: http://arxiv.org/abs/2509.25158v1
- Date: Mon, 29 Sep 2025 17:56:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:04.144319
- Title: Physics-Informed Inductive Biases for Voltage Prediction in Distribution Grids
- Title(参考訳): 配電系統における電圧予測のための物理インフォームインダクティブバイアス
- Authors: Ehimare Okoyomon, Arbel Yaniv, Christoph Goebel,
- Abstract要約: モデルの性能向上における帰納バイアスの役割を系統的に検討する。
具体的には, (i) パワーフロー制約損失関数, (ii) 複素数値ニューラルネットワーク, (iii) 残差に基づくタスク再構成の3つの物理インフォームド戦略を評価する。
本研究は,現代の配電網における信頼性と効率のよい電圧予測のための学習を,モデル仮定が最も効果的に導くための実践的洞察を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Voltage prediction in distribution grids is a critical yet difficult task for maintaining power system stability. Machine learning approaches, particularly Graph Neural Networks (GNNs), offer significant speedups but suffer from poor generalization when trained on limited or incomplete data. In this work, we systematically investigate the role of inductive biases in improving a model's ability to reliably learn power flow. Specifically, we evaluate three physics-informed strategies: (i) power-flow-constrained loss functions, (ii) complex-valued neural networks, and (iii) residual-based task reformulation. Using the ENGAGE dataset, which spans multiple low- and medium-voltage grid configurations, we conduct controlled experiments to isolate the effect of each inductive bias and assess both standard predictive performance and out-of-distribution generalization. Our study provides practical insights into which model assumptions most effectively guide learning for reliable and efficient voltage prediction in modern distribution networks.
- Abstract(参考訳): 配電系統における電圧予測は, 電力系統の安定性を維持する上で重要な課題である。
機械学習アプローチ、特にグラフニューラルネットワーク(GNN)は、大幅なスピードアップを提供するが、制限あるいは不完全なデータでトレーニングされた場合、一般化が不十分である。
本研究では,モデルの性能向上における帰納バイアスの役割を系統的に検討する。
具体的には,3つの物理インフォームド戦略を評価する。
(i)電力フローに制約のある損失関数
(ii)複素数値ニューラルネットワーク、及び
三 残余に基づくタスクの改定
複数の低電圧グリッド構成と中電圧グリッド構成にまたがるENGAGEデータセットを用いて、各誘導バイアスの影響を分離し、標準予測性能とアウト・オブ・ディストリビューション一般化の両方を評価する制御実験を行う。
本研究は,現代の配電網における信頼性と効率のよい電圧予測のための学習を,モデル仮定が最も効果的に導くための実践的洞察を提供する。
関連論文リスト
- Limitations of Physics-Informed Neural Networks: a Study on Smart Grid Surrogation [29.49941497527361]
PINNは、物理法則を直接学習フレームワークに組み込むことによって、スマートグリッドモデリングの変革的なアプローチを示す。
本稿では、PINNの機能をスマートグリッドダイナミクスの代理モデルとして評価する。
PINNの優れた一般化と誤り低減におけるデータ駆動モデルの性能を実証する。
論文 参考訳(メタデータ) (2025-08-29T12:15:32Z) - TDNetGen: Empowering Complex Network Resilience Prediction with Generative Augmentation of Topology and Dynamics [14.25304439234864]
本稿では,ネットワークトポロジとダイナミックスの生成的データ拡張を通じてこの問題に対処するために設計された,複雑なネットワークに対する新しいレジリエンス予測フレームワークを提案する。
3つのネットワークデータセットの実験結果から,提案するフレームワークであるTDNetGenは,最大85%~95%の精度で高い予測精度を達成可能であることが示された。
論文 参考訳(メタデータ) (2024-08-19T09:20:31Z) - Generalizable Temperature Nowcasting with Physics-Constrained RNNs for Predictive Maintenance of Wind Turbine Components [7.319046306998086]
本稿では,風車用ギアボックス軸受の物理制約付き深部学習に基づく予測保守を,部分的なシステム知識で簡便かつ効率的に行う方法について述べる。
その結果、ベースラインニューラルネットワークと比較して、目に見えない環境への一般化性能が改善された。
論文 参考訳(メタデータ) (2024-04-05T14:23:43Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
提案手法は,複数の視覚タスクにおけるネットワーク一般化能力を常に改善することを示す。
我々の手法は単純だが有効であり、トレーニング可能なパラメータや損失制約を伴わずにネットワークに容易に統合できる。
論文 参考訳(メタデータ) (2023-01-16T14:25:02Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Predicting Dynamic Stability from Static Features in Power Grid Models
using Machine Learning [0.0]
本稿では,ネットワーク科学のメトリクスと機械学習モデルを組み合わせて,非同期イベントのリスクを予測する。
我々は、複数の合成試験格子からシミュレーションデータを用いて、そのようなモデルを訓練し、テストする。
統合モデルでは,すべてのデータセットを平均化した場合の平均精度が0.996$以上のデシンクロナイゼーションイベントを予測できることがわかった。
論文 参考訳(メタデータ) (2022-10-17T17:16:48Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
本稿では、新しい未知のトポロジや未知の予測タスクに適応可能な回路表現を学習するための教師付き事前学習手法を提案する。
異なる回路の変動位相構造に対処するため、各回路をグラフとして記述し、グラフニューラルネットワーク(GNN)を用いてノード埋め込みを学習する。
出力ノード電圧の予測における事前学習GNNは、新しい未知のトポロジや新しい回路レベル特性の予測に適応可能な学習表現を促進することができることを示す。
論文 参考訳(メタデータ) (2022-03-29T21:18:47Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
本稿では,勾配降下による終端から終端までのアナログニューラルネットワークの学習法を提案する。
数学的には、アナログニューラルネットワークのクラス(非線形抵抗性ネットワークと呼ばれる)がエネルギーベースモデルであることが示される。
我々の研究は、オンチップ学習をサポートする、超高速でコンパクトで低消費電力のニューラルネットワークの新世代の開発を導くことができる。
論文 参考訳(メタデータ) (2020-06-02T23:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。