論文の概要: Cognifying Education: Mapping AI's transformative role in emotional, creative, and collaborative learning
- arxiv url: http://arxiv.org/abs/2509.25266v1
- Date: Sun, 28 Sep 2025 07:32:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:04.218176
- Title: Cognifying Education: Mapping AI's transformative role in emotional, creative, and collaborative learning
- Title(参考訳): Cognifying Education: 感情的、創造的、協調的な学習におけるAIの変革的役割をマッピングする
- Authors: Mikael Gorsky, Ilya Levin,
- Abstract要約: 感情的サポート、創造性、文脈理解、学生参加、問題解決、倫理と道徳、コラボレーションの7つの主要な領域について検討する。
私たちは、AIが人間の教育者を補完し、強化することで、認知、社会的、感情的な側面を越えてより豊かな学習経験を育むことができることに気付きました。
- 参考スコア(独自算出の注目度): 0.6138671548064355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) is rapidly reshaping educational practice, challenging long held assumptions about teaching and learning. This article integrates conceptual perspectives from recent books (Genesis by Eric Schmidt, Henry Kissinger and Craig Mundie, CoIntelligence by Ethan Mollick, and The Inevitable by Kevin Kelly) with empirical insights from popular AI podcasts and Anthropic public releases. We examine seven key domains: emotional support, creativity, contextual understanding, student engagement, problem solving, ethics and morality, and collaboration. For each domain, we explore AI capabilities, opportunities for transformative change, and emerging best practices, drawing equally from theoretical analysis and real world observations. Overall, we find that AI, when used thoughtfully, can complement and enhance human educators in fostering richer learning experiences across cognitive, social, and emotional dimensions. We emphasize an optimistic yet responsible outlook: educators and students should actively shape AI integration to amplify human potential in creativity, ethical reasoning, collaboration, and beyond, while maintaining a focus on human centric values.
- Abstract(参考訳): 人工知能(AI)は、教育実践を急速に改革し、教育と学習に関する長年の前提に挑戦している。
この記事では、最近の書籍(Eric Schmidt氏、Henry Kissinger氏、Craig Mundie氏、Ethan Mollick氏によるCoIntelligence氏、Kevin Kelly氏によるThe Inevitable氏)の概念的な視点と、人気のあるAIポッドキャストやArthropic公開リリースからの実証的な洞察を統合する。
感情的サポート、創造性、文脈理解、学生参加、問題解決、倫理と道徳、コラボレーションの7つの主要な領域について検討する。
それぞれの領域について、私たちは、理論的分析と現実世界の観察から同じように、AI能力、変革的変化の機会、そして新たなベストプラクティスを探求します。
全体として、AIは人間の教育者を補完し、強化することで、認知、社会的、感情的な側面を越えてより豊かな学習経験を育むことができる。
教育者や学生はAI統合を積極的に形成し、創造性、倫理的推論、コラボレーションなどにおける人間の潜在能力を増幅し、人間中心の価値観に焦点を合わせなければならない。
関連論文リスト
- Bridging Minds and Machines: Toward an Integration of AI and Cognitive Science [48.38628297686686]
認知科学は人工知能(AI)、哲学、心理学、神経科学、言語学、文化などの分野を深く形成している。
AIの多くのブレークスルーは、そのルーツを認知理論にさかのぼる一方で、AI自体が認知研究を進めるのに欠かせないツールになっている。
我々は、認知科学におけるAIの未来は、性能の向上だけでなく、人間の心の理解を深めるシステムの構築にも関係していると主張している。
論文 参考訳(メタデータ) (2025-08-28T11:26:17Z) - Extended Creativity: A Conceptual Framework for Understanding Human-AI Creative Relations [0.6031721946649193]
AIが創造的なプロセスをサポートし、形作る3つの基本的なモードを特定します。
AIがツールとして機能するサポート、AIと人間が補完的な方法で協力するSynergy、そして人間とAIの認知が統合され、統一された創造システムを形成する共生。
各構成が日々の問題解決からパラダイムシフトイノベーションに至るまで,創造性のレベルにどのように影響するかを検討する。
論文 参考訳(メタデータ) (2025-06-12T00:16:52Z) - Enhancing AI-Driven Education: Integrating Cognitive Frameworks, Linguistic Feedback Analysis, and Ethical Considerations for Improved Content Generation [0.0]
本稿では,4つの関連研究から洞察を合成し,AI駆動型教育ツールの強化のための包括的枠組みを提案する。
我々は、認知アセスメントフレームワーク、AI生成フィードバックの言語分析、倫理設計原則を統合し、効果的で責任のあるAIツールの開発を指導する。
論文 参考訳(メタデータ) (2025-05-01T06:36:21Z) - Augmenting Minds or Automating Skills: The Differential Role of Human Capital in Generative AI's Impact on Creative Tasks [4.39919134458872]
ジェネレーティブAIは、創造的な仕事を急速に作り直し、その受益者や社会的意味について批判的な疑問を提起している。
この研究は、創造的タスクにおいて、生成的AIが様々な形態の人的資本とどのように相互作用するかを探求することによって、一般的な仮定に挑戦する。
AIはクリエイティブツールへのアクセスを民主化するが、同時に認知的不平等を増幅する。
論文 参考訳(メタデータ) (2024-12-05T08:27:14Z) - Aligning Generalisation Between Humans and Machines [74.120848518198]
AI技術は、科学的発見と意思決定において人間を支援することができるが、民主主義と個人を妨害することもある。
AIの責任ある使用と人間-AIチームへの参加は、AIアライメントの必要性をますます示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
我々は人間の知恵について知られているものを調べ、そのAIのビジョンをスケッチする。
AIシステムは特にメタ認知に苦しむ。
スマートAIのベンチマーク、トレーニング、実装について論じる。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Shifting the Human-AI Relationship: Toward a Dynamic Relational Learning-Partner Model [0.0]
我々は、人間との対話から学ぶ学生に似た、AIを学習パートナーとして見ることへのシフトを提唱する。
我々は「第三の心」が人間とAIの協力関係を通して生まれることを示唆する。
論文 参考訳(メタデータ) (2024-10-07T19:19:39Z) - Untangling Critical Interaction with AI in Students Written Assessment [2.8078480738404]
重要な課題は、人間が必須の批判的思考とAIリテラシースキルを備えていることを保証することである。
本稿では,AIと批判的学習者インタラクションの概念を概念化するための第一歩を提供する。
理論的モデルと経験的データの両方を用いて、予備的な発見は、書き込みプロセス中にAIとのディープインタラクションが全般的に欠如していることを示唆している。
論文 参考訳(メタデータ) (2024-04-10T12:12:50Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
我々は世界モデルと予測符号化の2つの概念に焦点を当てる。
神経科学において、予測符号化は、脳がその入力を継続的に予測し、その環境における自身のダイナミクスと制御行動のモデル化に適応するように提案する。
論文 参考訳(メタデータ) (2023-01-14T06:38:14Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。