論文の概要: Neural Network approximation power on homogeneous and heterogeneous reaction-diffusion equations
- arxiv url: http://arxiv.org/abs/2510.14094v1
- Date: Wed, 15 Oct 2025 21:03:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-17 21:15:14.616288
- Title: Neural Network approximation power on homogeneous and heterogeneous reaction-diffusion equations
- Title(参考訳): 等質及び不均一反応拡散方程式のニューラルネットワーク近似パワー
- Authors: Haotian Feng,
- Abstract要約: 本稿では,1次元および2次元の反応拡散方程式に対するニューラルネットワークの近似力を理論的に解析する。
2層ニューラルネットワークは1次元の反応拡散方程式を近似でき、3層ニューラルネットワークはその2次元の方程式を近似することができる。
全体として、この研究は反応拡散方程式および関連するPDEに対する近似解におけるニューラルネットワークの表現力を強調している。
- 参考スコア(独自算出の注目度): 2.132096006921048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reaction-diffusion systems represent one of the most fundamental formulations used to describe a wide range of physical, chemical, and biological processes. With the increasing adoption of neural networks, recent research has focused on solving differential equations using machine learning techniques. However, the theoretical foundation explaining why neural networks can effectively approximate such solutions remains insufficiently explored. This paper provides a theoretical analysis of the approximation power of neural networks for one- and two-dimensional reaction-diffusion equations in both homogeneous and heterogeneous media. Building upon the universal approximation theorem, we demonstrate that a two-layer neural network can approximate the one-dimensional reaction-diffusion equation, while a three-layer neural network can approximate its two-dimensional counterpart. The theoretical framework presented here can be further extended to elliptic and parabolic equations. Overall, this work highlights the expressive power of neural networks in approximating solutions to reaction-diffusion equations and related PDEs, providing a theoretical foundation for neural network-based differential equation solvers.
- Abstract(参考訳): 反応拡散系は、様々な物理的、化学的、生物学的過程を記述するために用いられる最も基本的な定式化の1つである。
ニューラルネットワークの採用の増加に伴い、最近の研究では、機械学習技術を用いた微分方程式の解法に焦点が当てられている。
しかし、なぜニューラルネットワークがそのような解を効果的に近似できるのかを説明する理論的基礎はいまだに不十分である。
本稿では,一次元および二次元の反応拡散方程式に対するニューラルネットワークの近似力に関する理論的解析を行う。
一般化近似定理に基づいて、2層ニューラルネットワークが1次元反応拡散方程式を近似し、3層ニューラルネットワークが2次元ニューラルネットワークを近似することを示した。
ここで提示される理論的枠組みは楕円型方程式や放物型方程式にさらに拡張することができる。
この研究は、反応拡散方程式と関連するPDEの近似解におけるニューラルネットワークの表現力を強調し、ニューラルネットワークに基づく微分方程式解法の理論基盤を提供する。
関連論文リスト
- Modelling Chemical Reaction Networks using Neural Ordinary Differential Equations [6.1947324899410745]
化学反応ネットワーク理論において、通常の微分方程式は化学種濃度の時間変化をモデル化するために用いられる。
本研究の目的は, 動的モデリングと深層学習を, ニューラル常微分方程式の形で組み合わせることで, 反応ネットワークにおけるこれらの隠れた洞察を解明することである。
論文 参考訳(メタデータ) (2025-02-11T10:10:33Z) - Transformers from Diffusion: A Unified Framework for Neural Message Passing [79.9193447649011]
メッセージパッシングニューラルネットワーク(MPNN)は、デファクトクラスのモデルソリューションとなっている。
本稿では,拡散の誘導バイアスとエネルギーの層的制約を統合するエネルギー制約拡散モデルを提案する。
これらの知見に基づいて、我々はTransformer (DIFFormer)と呼ばれる新しいタイプのメッセージパッシングモデルを考案した。
論文 参考訳(メタデータ) (2024-09-13T17:54:41Z) - Convection-Diffusion Equation: A Theoretically Certified Framework for Neural Networks [14.01268607317875]
ニューラルネットワークの偏微分方程式モデルについて検討する。
この写像は対流拡散方程式で定式化できることを示す。
拡散機構をネットワークアーキテクチャに組み込んだ新しいネットワーク構造を設計する。
論文 参考訳(メタデータ) (2024-03-23T05:26:36Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Partial Differential Equations is All You Need for Generating Neural Architectures -- A Theory for Physical Artificial Intelligence Systems [40.20472268839781]
我々は、統計物理学における反応拡散方程式、量子力学におけるシュル・オーディンガー方程式、同軸光学におけるヘルムホルツ方程式を一般化する。
数値解を求めるためにNPDEを離散化するために有限差分法を用いる。
多層パーセプトロン、畳み込みニューラルネットワーク、リカレントニューラルネットワークなど、ディープニューラルネットワークアーキテクチャの基本構築ブロックが生成される。
論文 参考訳(メタデータ) (2021-03-10T00:05:46Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Neural Operator: Graph Kernel Network for Partial Differential Equations [57.90284928158383]
この作業はニューラルネットワークを一般化し、無限次元空間(演算子)間の写像を学習できるようにすることである。
非線形活性化関数と積分作用素のクラスを構成することにより、無限次元写像の近似を定式化する。
実験により,提案したグラフカーネルネットワークには所望の特性があり,最先端技術と比較した場合の競合性能を示すことが確認された。
論文 参考訳(メタデータ) (2020-03-07T01:56:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。