論文の概要: Parallel BiLSTM-Transformer networks for forecasting chaotic dynamics
- arxiv url: http://arxiv.org/abs/2510.23685v1
- Date: Mon, 27 Oct 2025 16:17:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-29 15:35:36.346376
- Title: Parallel BiLSTM-Transformer networks for forecasting chaotic dynamics
- Title(参考訳): カオス力学予測のための並列BiLSTM-Transformerネットワーク
- Authors: Junwen Ma, Mingyu Ge, Yisen Wang, Yong Zhang, Weicheng Fu,
- Abstract要約: 本研究では,Transformer と Bidirectional Long Short-Term Memory Network を統合した並列予測フレームワークを提案する。
提案したハイブリッドモデルはデュアルブランチアーキテクチャを採用しており、Transformerブランチは主に長距離依存関係をキャプチャする。
結果は、提案されたハイブリッドフレームワークがタスク間でシングルブランチアーキテクチャの両方より優れていることを一貫して示している。
- 参考スコア(独自算出の注目度): 24.960864709838436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The nonlinear nature of chaotic systems results in extreme sensitivity to initial conditions and highly intricate dynamical behaviors, posing fundamental challenges for accurately predicting their evolution. To overcome the limitation that conventional approaches fail to capture both local features and global dependencies in chaotic time series simultaneously, this study proposes a parallel predictive framework integrating Transformer and Bidirectional Long Short-Term Memory (BiLSTM) networks. The hybrid model employs a dual-branch architecture, where the Transformer branch mainly captures long-range dependencies while the BiLSTM branch focuses on extracting local temporal features. The complementary representations from the two branches are fused in a dedicated feature-fusion layer to enhance predictive accuracy. As illustrating examples, the model's performance is systematically evaluated on two representative tasks in the Lorenz system. The first is autonomous evolution prediction, in which the model recursively extrapolates system trajectories from the time-delay embeddings of the state vector to evaluate long-term tracking accuracy and stability. The second is inference of unmeasured variable, where the model reconstructs the unobserved states from the time-delay embeddings of partial observations to assess its state-completion capability. The results consistently indicate that the proposed hybrid framework outperforms both single-branch architectures across tasks, demonstrating its robustness and effectiveness in chaotic system prediction.
- Abstract(参考訳): カオスシステムの非線形性は、初期条件に対する極度に敏感であり、高度に複雑な力学挙動をもたらし、その進化を正確に予測するための根本的な課題を提起する。
そこで本研究では,Transformer と Bidirectional Long-Term Memory (BiLSTM) を併用した並列予測フレームワークを提案する。
ハイブリッドモデルはデュアルブランチアーキテクチャを採用し、Transformerブランチは主に長距離依存関係をキャプチャし、BiLSTMブランチは局所的な時間的特徴の抽出に重点を置いている。
2つの枝からの相補的な表現は、予測精度を高めるために専用の特徴融合層に融合される。
例を挙げると、モデルの性能は、Lorenzシステムにおける2つの代表的なタスクに対して体系的に評価される。
1つ目は自律進化予測であり、モデルが状態ベクトルの時間遅延埋め込みから系の軌道を再帰的に外挿し、長期追跡精度と安定性を評価する。
2つ目は未測定変数の推論であり、モデルはその状態補完能力を評価するために部分的な観測の時間遅延埋め込みから観測されていない状態を再構成する。
提案したハイブリッドフレームワークは,タスク全体にわたって単一ブランチアーキテクチャよりも優れており,カオスシステム予測における堅牢性と有効性を示している。
関連論文リスト
- Transformer with Koopman-Enhanced Graph Convolutional Network for Spatiotemporal Dynamics Forecasting [12.301897782320967]
TK-GCNは、幾何学的空間符号化と長距離時間モデリングを統合した2段階のフレームワークである。
我々は,TK-GCNが予測地平線全体にわたって優れた予測精度を提供することを示す。
論文 参考訳(メタデータ) (2025-07-05T01:26:03Z) - Topology-Aware Conformal Prediction for Stream Networks [54.505880918607296]
本研究では,ネットワークトポロジと時間的ダイナミクスを共形予測フレームワークに統合した新しいフレームワークであるspatio-Temporal Adaptive Conformal Inference (textttCISTA)を提案する。
この結果から,TextttCISTAは予測効率とカバレッジのバランスを効果的に保ち,既存のストリームネットワークの共形予測手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-03-06T21:21:15Z) - Recurrent Stochastic Configuration Networks with Hybrid Regularization for Nonlinear Dynamics Modelling [3.8719670789415925]
リカレント・コンフィグレーション・ネットワーク(RSCN)は不確実性のある非線形力学系をモデル化する大きな可能性を示している。
本稿では,ネットワークの学習能力と一般化性能を両立させるために,ハイブリッド正規化を備えたRCCNを提案する。
論文 参考訳(メタデータ) (2024-11-26T03:06:39Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
非定常PGDSは、基礎となる遷移行列が時間とともに進化できるように提案されている。
後続シミュレーションを行うために, 完全共役かつ効率的なギブスサンプリング装置を開発した。
実験により,提案した非定常PGDSは,関連するモデルと比較して予測性能が向上することを示した。
論文 参考訳(メタデータ) (2024-02-26T04:39:01Z) - Hybrid Transformer and Spatial-Temporal Self-Supervised Learning for
Long-term Traffic Prediction [1.8531577178922987]
本稿では,ハイブリッドトランスフォーマーと自己教師型学習を組み合わせたモデルを提案する。
このモデルは、トラフィックのシーケンスレベルにデータ拡張技術を適用することにより、適応的なデータ拡張を強化する。
本研究では,時間的および空間的依存をモデル化する2つの自己教師型学習タスクを設計し,モデルの精度と能力を向上させる。
論文 参考訳(メタデータ) (2024-01-29T06:17:23Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
モーメントマッチングの目的によってモチベーションされ、複合的エラーを軽減し、局所的(しかし前方的な)遷移ポリシーを最適化する。
推論において、学習されたポリシーは反復的なサンプリングのジェネレータとして機能し、学習されたエネルギーはサンプルの品質を評価するための軌道レベル尺度として機能する。
論文 参考訳(メタデータ) (2023-11-02T16:45:25Z) - Stacked Residuals of Dynamic Layers for Time Series Anomaly Detection [0.0]
多変量時系列における異常検出を行うために,終端から終端までの微分可能なニューラルネットワークアーキテクチャを提案する。
このアーキテクチャは、信号の線形予測可能なコンポーネントを分離するために設計された動的システムのカスケードである。
異常検出器は、予測残差の時間的構造を利用して、孤立した点異常とセットポイントの変化の両方を検出する。
論文 参考訳(メタデータ) (2022-02-25T01:50:22Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
時間遅延コヒーレントフィードバックを受けるJaynes-Cummingsモデルのコヒーレンスと定常状態特性について検討する。
導入されたフィードバックは、システムの動的応答と定常量子特性を質的に修正する。
論文 参考訳(メタデータ) (2020-06-20T10:07:01Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。