論文の概要: Nonasymptotic Convergence Rates for Plug-and-Play Methods With MMSE Denoisers
- arxiv url: http://arxiv.org/abs/2510.27211v1
- Date: Fri, 31 Oct 2025 06:12:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-03 17:52:16.002563
- Title: Nonasymptotic Convergence Rates for Plug-and-Play Methods With MMSE Denoisers
- Title(参考訳): MMSEデノイザを用いたプラグアンドプレイ法における漸近収束率
- Authors: Henry Pritchard, Rahul Parhi,
- Abstract要約: MMSE denoiser は負対数密度の上次元エンベロープとして記述できる正則化器に対応することを示す。
我々はMMSEデノイザーの最初のサブコンバージェンス保証を導出する。
- 参考スコア(独自算出の注目度): 5.736588561666141
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is known that the minimum-mean-squared-error (MMSE) denoiser under Gaussian noise can be written as a proximal operator, which suffices for asymptotic convergence of plug-and-play (PnP) methods but does not reveal the structure of the induced regularizer or give convergence rates. We show that the MMSE denoiser corresponds to a regularizer that can be written explicitly as an upper Moreau envelope of the negative log-marginal density, which in turn implies that the regularizer is 1-weakly convex. Using this property, we derive (to the best of our knowledge) the first sublinear convergence guarantee for PnP proximal gradient descent with an MMSE denoiser. We validate the theory with a one-dimensional synthetic study that recovers the implicit regularizer. We also validate the theory with imaging experiments (deblurring and computed tomography), which exhibit the predicted sublinear behavior.
- Abstract(参考訳): ガウス雑音下での最小平均二乗誤差(MMSE)デノイザは、プラグアンドプレイ法(PnP)の漸近収束を満足するが、誘導正則化器の構造を明らかにしたり、収束率を与えたりする近位作用素として記述できることが知られている。
MMSE denoiser は負の対数密度のモローエンベロープとして明示的に記述できる正則化器に対応し、従って正則化器が 1-弱凸であることを示す。
この性質を用いて、MMSEデノイザを用いたPnP近位勾配降下に対する最初のサブ線形収束保証を導出する。
暗黙の正則化器を復元する一次元の合成研究により理論を検証した。
また,画像実験(デブロアリングと計算トモグラフィ)により予測されたサブ線形挙動を示す理論を検証した。
関連論文リスト
- Revisiting Convergence: Shuffling Complexity Beyond Lipschitz Smoothness [50.78508362183774]
シャッフル型勾配法はその単純さと迅速な経験的性能のために実践的に好まれる。
リプシッツ条件は一般的な機械学習スキームでは満たされないことが多い。
論文 参考訳(メタデータ) (2025-07-11T15:36:48Z) - Gradient Normalization Provably Benefits Nonconvex SGD under Heavy-Tailed Noise [60.92029979853314]
重み付き雑音下でのグラディエントDescence(SGD)の収束を確実にする上での勾配正規化とクリッピングの役割について検討する。
我々の研究は、重尾雑音下でのSGDの勾配正規化の利点を示す最初の理論的証拠を提供する。
我々は、勾配正規化とクリッピングを取り入れた加速SGD変種を導入し、さらに重み付き雑音下での収束率を高めた。
論文 参考訳(メタデータ) (2024-10-21T22:40:42Z) - Taming Nonconvex Stochastic Mirror Descent with General Bregman
Divergence [25.717501580080846]
本稿では、現代の非最適化設定における勾配フォワードミラー(SMD)の収束を再考する。
トレーニングのために,線形ネットワーク問題に対する確率収束アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-02-27T17:56:49Z) - Robust Low-Rank Matrix Completion via a New Sparsity-Inducing
Regularizer [30.920908325825668]
本稿では,ハイブリッド常連Welsch (HOW) に新たな損失関数を提案する。
論文 参考訳(メタデータ) (2023-10-07T09:47:55Z) - Convergent regularization in inverse problems and linear plug-and-play
denoisers [3.759634359597638]
Plug-and-play () denoisingは、逆画像復号器を用いて画像の問題を解くための一般的なフレームワークである。
可算収束正則化スキームが証明収束正則化スキームであるかどうかというような測定におけるノイズレベルがゼロになるので、収束解の性質についてはあまり分かっていない。
線形デノイザでは、明らかに正則化関数に対するデノイザの暗黙的な正則化が収束正則化スキームにつながることを示す。
論文 参考訳(メタデータ) (2023-07-18T17:16:08Z) - Clipped Stochastic Methods for Variational Inequalities with
Heavy-Tailed Noise [64.85879194013407]
単調なVIPと非単調なVIPの解法における信頼度に対数的依存を持つ最初の高確率結果が証明された。
この結果は光尾の場合で最もよく知られたものと一致し,非単調な構造問題に新鮮である。
さらに,多くの実用的な定式化の勾配雑音が重く,クリッピングによりSEG/SGDAの性能が向上することを示す。
論文 参考訳(メタデータ) (2022-06-02T15:21:55Z) - Proximal denoiser for convergent plug-and-play optimization with
nonconvex regularization [7.0226402509856225]
Plug-and-Play ()メソッドは、ニューラルネットワーク演算子をデノナイジング演算子に置き換えることで、アルゴリズムによって、近位姿勢の逆問題を解決する。
このデノイザが実際に勾配関数に対応していることが示される。
論文 参考訳(メタデータ) (2022-01-31T14:05:20Z) - Fixed-Point and Objective Convergence of Plug-and-Play Algorithms [25.65350839936094]
画像再構築の標準モデルは、正規化と共にデータ忠実性ノベルティ項の再構築を含む。
本稿では, 特殊近位線形デノイザに対する収束の両形態を定式化する。
我々は、線型 denoiser から派生した特別な内積(およびノルム)を扱う。
論文 参考訳(メタデータ) (2021-04-21T04:25:17Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
そこで本研究では,従来のi.i.d.ソースに適した圧縮圧縮センシング(CS)リカバリアルゴリズムを提案する。
我々のアルゴリズムは、Borgerdingの学習AMP(LAMP)に基づいて構築されるが、アルゴリズムに普遍的な復調関数を採用することにより、それを大幅に改善する。
数値評価により,L-GM-AMPアルゴリズムは事前の知識を必要とせず,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-11-18T16:40:45Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
そこで本研究では,重み付き分散雑音を用いたスムーズな凸最適化のための,クリップ付きSSTMと呼ばれる新しい1次高速化手法を提案する。
この場合、最先端の結果を上回る新たな複雑さが証明される。
本研究は,SGDにおいて,ノイズに対する光細かな仮定を伴わずにクリッピングを施した最初の非自明な高確率複雑性境界を導出した。
論文 参考訳(メタデータ) (2020-05-21T17:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。