論文の概要: Data-driven Feynman-Kac Discovery with Applications to Prediction and Data Generation
- arxiv url: http://arxiv.org/abs/2511.08606v1
- Date: Thu, 13 Nov 2025 01:00:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-13 22:34:54.134721
- Title: Data-driven Feynman-Kac Discovery with Applications to Prediction and Data Generation
- Title(参考訳): データ駆動型Feynman-Kacディスカバリと予測とデータ生成への応用
- Authors: Qi Feng, Guang Lin, Purav Matlia, Denny Serdarevic,
- Abstract要約: リスクニュートラルな確率測度で定式化された最初のSINDy法を導入し、1組のストックとオプション軌道から後方微分方程式(BSDE)を復元する。
我々は前方予測を行うだけでなく、基礎となる確率論的法則と整合した新しい合成データパスを生成することができる。
- 参考スコア(独自算出の注目度): 9.24445668058824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel data-driven framework for discovering probabilistic laws underlying the Feynman-Kac formula. Specifically, we introduce the first stochastic SINDy method formulated under the risk-neutral probability measure to recover the backward stochastic differential equation (BSDE) from a single pair of stock and option trajectories. Unlike existing approaches to identifying stochastic differential equations-which typically require ergodicity-our framework leverages the risk-neutral measure, thereby eliminating the ergodicity assumption and enabling BSDE recovery from limited financial time series data. Using this algorithm, we are able not only to make forward-looking predictions but also to generate new synthetic data paths consistent with the underlying probabilistic law.
- Abstract(参考訳): 本稿では,Feynman-Kac式に基づく確率論的法則を発見するための新しいデータ駆動型フレームワークを提案する。
具体的には,一対のストックとオプション軌道から後方確率微分方程式(BSDE)を復元するために,リスクニュートラルな確率測度で定式化された最初の確率SINDy法を導入する。
一般にエルゴディティ・アー・フレームワークを必要とする確率微分方程式を同定する既存のアプローチとは異なり、リスクニュートラル測度を利用して、エルゴディティ仮定を排除し、限られた金融時系列データからBSDEの回復を可能にする。
このアルゴリズムを用いることで、前方の予測を行うだけでなく、基礎となる確率論的法則と整合した新しい合成データパスを生成することができる。
関連論文リスト
- Generating Synthetic Ground Truth Distributions for Multi-step Trajectory Prediction using Probabilistic Composite Bézier Curves [4.837320865223374]
本稿では,合成確率的B'ezier曲線に基づく合成データセット生成手法を提案する。
本稿では, 生成した地中真実分布データを用いて, 模範的軌道予測モデルの評価を行う。
論文 参考訳(メタデータ) (2024-04-05T20:50:06Z) - Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes [18.344934424278048]
生成モデルに基づく動的システムの確率的予測のためのフレームワークを提案する。
このSDEのドリフトと拡散係数は訓練後に調整できることを示し、推定誤差の影響を最小限に抑える特定の選択がF"ollmerプロセスを与えることを示した。
論文 参考訳(メタデータ) (2024-03-20T16:33:06Z) - Neural variational Data Assimilation with Uncertainty Quantification using SPDE priors [28.804041716140194]
ディープラーニングコミュニティの最近の進歩は、ニューラルネットワークと変分データ同化フレームワークを通じて、この問題に対処することができる。
本研究では、部分微分方程式(SPDE)とガウス過程(GP)の理論を用いて状態の空間的および時間的共分散を推定する。
論文 参考訳(メタデータ) (2024-02-02T19:18:12Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - STEERING: Stein Information Directed Exploration for Model-Based
Reinforcement Learning [111.75423966239092]
遷移モデルの現在の推定値と未知の最適値との間の積分確率距離(IPM)の観点から探索インセンティブを提案する。
KSDに基づく新しいアルゴリズムを開発した。 textbfSTEin information dirtextbfEcted Explor for model-based textbfReinforcement Learntextbfing。
論文 参考訳(メタデータ) (2023-01-28T00:49:28Z) - Probabilistic learning inference of boundary value problem with
uncertainties based on Kullback-Leibler divergence under implicit constraints [0.0]
本稿では,境界値問題に対する後続確率モデルを事前確率モデルから推定できる確率論的学習推定法を提案する。
制約を表す暗黙マッピングの統計的代理モデルを導入する。
第2部では、提案した理論を説明するために応用を提示し、また、不均一な線形弾性媒体の3次元均質化への寄与も示している。
論文 参考訳(メタデータ) (2022-02-10T16:00:10Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - Low-rank statistical finite elements for scalable model-data synthesis [0.8602553195689513]
statFEMは、支配方程式に強制を埋め込むことによって、事前モデルの誤特定を認める。
この方法は、観測されたデータ生成過程を最小限の情報損失で再構築する。
本稿では、下層の密度共分散行列の低ランク近似を埋め込むことで、このハードルを克服する。
論文 参考訳(メタデータ) (2021-09-10T09:51:43Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
不確かさが唯一の確実性である。
伝統的に、直接回帰定式化を考慮し、ある確率分布の族に出力空間を変更することによって不確実性をモデル化する。
現在のレグレッション技術における不確実性をモデル化する方法は、未解決の問題である。
論文 参考訳(メタデータ) (2021-03-25T06:56:09Z) - The Risks of Invariant Risk Minimization [52.7137956951533]
不変リスク最小化(Invariant Risk Minimization)は、データの深い不変性を学ぶという考え方に基づく目標である。
我々は、IRMの目的に基づく分類の最初の分析と、最近提案されたこれらの代替案について、かなり自然で一般的なモデルで分析する。
IRMは、テストデータがトレーニング分布と十分に類似していない限り、破滅的に失敗する可能性がある。
論文 参考訳(メタデータ) (2020-10-12T14:54:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。