論文の概要: Gauge-Equivariant Graph Networks via Self-Interference Cancellation
- arxiv url: http://arxiv.org/abs/2511.16062v1
- Date: Thu, 20 Nov 2025 05:48:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-21 17:08:52.48436
- Title: Gauge-Equivariant Graph Networks via Self-Interference Cancellation
- Title(参考訳): 自己干渉キャンセラによるゲージ同変グラフネットワーク
- Authors: Yoonhyuk Choi, Chong-Kwon Kim,
- Abstract要約: グラフニューラルネットワークは、ホモフィルグラフに優れるが、自己強化信号と位相不整合信号により、しばしばヘテロフィリーの下で失敗する。
本稿では,投影型干渉機構を付加的なアグリゲーションに置き換えた自己干渉キャンセラレーション(GESC)を用いたゲージ・等価グラフネットワークを提案する。
- 参考スコア(独自算出の注目度): 4.40019976565253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) excel on homophilous graphs but often fail under heterophily due to self-reinforcing and phase-inconsistent signals. We propose a Gauge-Equivariant Graph Network with Self-Interference Cancellation (GESC), which replaces additive aggregation with a projection-based interference mechanism. Unlike prior magnetic or gauge-equivariant GNNs that typically focus on phase handling in spectral filtering while largely relying on scalar weighting, GESC introduces a $\mathrm{U}(1)$ phase connection followed by a rank-1 projection that attenuates self-parallel components before attention. A sign- and phase-aware gate further regulates neighbor influence, attenuating components aligned with current node states and acting as a local notch on low-frequency modes. Across diverse graph benchmarks, our method consistently outperforms recent state-of-the-art models while offering a unified, interference-aware view of message passing. Our code is available at \href{here}{https://anonymous.4open.science/r/GESC-1B22}.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、ホモフィルグラフを排他するが、自己強化信号と位相不整合信号により、しばしばヘテロフィリーの下で失敗する。
本稿では,投影型干渉機構を付加的なアグリゲーションに置き換えた自己干渉キャンセラレーション(GESC)を用いたゲージ・等価グラフネットワークを提案する。
主にスカラー重み付けに依存しながらスペクトルフィルタリングにおける位相処理に焦点をあてる従来の磁気またはゲージ等価なGNNとは異なり、GESCは$\mathrm{U}(1)$ 位相接続を導入し、次に注目する前に自己並列成分を減衰させるランク1射影を導入する。
サイン・アンド・フェーズ・アウェアゲートは、隣接する影響を更に規制し、現在のノード状態に整合したコンポーネントを減衰させ、低周波モードの局所ノッチとして機能させる。
多様なグラフベンチマークを通じて、我々の手法は、メッセージパッシングの統一された干渉対応ビューを提供しながら、最新の最先端モデルよりも一貫して優れています。
我々のコードは \href{here}{https://anonymous.4open.science/r/GESC-1B22} で公開されている。
関連論文リスト
- Graph Signal Generative Diffusion Models [74.75869068073577]
拡散過程を用いたグラフ信号生成のためのU字型エンコーダ-デコーダグラフニューラルネットワーク(U-GNN)を提案する。
アーキテクチャは、エンコーダとデコーダパス間の接続をスキップすることで、異なる解像度でノード機能を学ぶ。
株価の確率予測における拡散モデルの有効性を実証する。
論文 参考訳(メタデータ) (2025-09-21T21:57:27Z) - Sheaf Graph Neural Networks via PAC-Bayes Spectral Optimization [13.021238902084647]
グラフニューラルネットワーク(GNN)のオーバースムース化は、異なるノード機能で崩壊を引き起こす。
SGPC (Sheaf GNNs with PAC-Bayes) は,セルラーシェーフメッセージパッシングと複数のメカニズムを組み合わせた統一アーキテクチャである。
9つのホモ親和性およびヘテロ親和性ベンチマークの実験により、SGPCは最先端スペクトルおよび層ベースGNNよりも優れた性能を示した。
論文 参考訳(メタデータ) (2025-08-01T06:39:28Z) - Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
ノイズの摂動は、しばしば3次元の点雲を破損させ、表面の再構成、レンダリング、さらなる処理といった下流のタスクを妨げる。
本稿では,GDGCNと呼ばれる粒度動的グラフ畳み込みネットワークについて紹介する。
論文 参考訳(メタデータ) (2024-11-21T14:19:32Z) - Dual-Frequency Filtering Self-aware Graph Neural Networks for Homophilic and Heterophilic Graphs [60.82508765185161]
我々は、Dual-Frequency Filtering Self-Aware Graph Neural Networks (DFGNN)を提案する。
DFGNNは低域通過フィルタと高域通過フィルタを統合し、滑らかで詳細な位相的特徴を抽出する。
フィルター比を動的に調整し、ホモフィルグラフとヘテロフィルグラフの両方に対応する。
論文 参考訳(メタデータ) (2024-11-18T04:57:05Z) - Demystifying Oversmoothing in Attention-Based Graph Neural Networks [23.853636836842604]
グラフニューラルネットワーク(GNN)におけるオーバースムーシング(Oversmoothing in Graph Neural Networks)とは、ネットワーク深度の増加がノードの均質表現につながる現象である。
これまでの研究により、グラフ畳み込みネットワーク(GCN)は指数関数的に表現力を失うことが判明した。
グラフアテンション機構が過剰なスムースを緩和できるかどうかはまだ議論の余地がある。
論文 参考訳(メタデータ) (2023-05-25T14:31:59Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
グラフ信号解析と処理の利点を享受する統合グラフ信号サンプリングフレームワークを提案する。
キーとなる考え方は、各ユーザのアイテムのレーティングをアイテムイットグラフの頂点上の関数(信号)に変換することである。
オンライン設定では、グラフフーリエ領域における連続ランダムガウス雑音を考慮したベイズ拡張(BGS-IMC)を開発する。
論文 参考訳(メタデータ) (2023-02-08T08:17:43Z) - Graph Federated Learning for CIoT Devices in Smart Home Applications [23.216140264163535]
G-Fedfilt'と呼ばれるグラフフィルタリングに基づく新しいグラフ信号処理(GSP)に基づく集約ルールを提案する。
提案するアグリゲータは,グラフのトポロジに基づく情報の流れを構造化することができる。
モデルの一般化をテストする場合、FedAvgよりも2.41%$高い精度が得られる。
論文 参考訳(メタデータ) (2022-12-29T17:57:19Z) - Stable and Transferable Hyper-Graph Neural Networks [95.07035704188984]
グラフニューラルネットワーク(GNN)を用いたハイパーグラフでサポートする信号処理アーキテクチャを提案する。
スペクトル類似性により任意のグラフにまたがってGNNの安定性と転送可能性の誤差をバウンドするフレームワークを提供する。
論文 参考訳(メタデータ) (2022-11-11T23:44:20Z) - Graph Highway Networks [77.38665506495553]
グラフ畳み込みネットワーク(GCN)は、グラフ表現の有効性と効率性から、グラフ表現の学習に広く利用されている。
彼らは、多くの層が積み重ねられたとき、学習された表現が類似したベクトルに収束するという悪名高い過度に滑らかな問題に悩まされる。
本稿では,GCN学習プロセスにおける均一性と不均一性との間のトレードオフのバランスをとるため,ゲーティングユニットを利用したグラフハイウェイネットワークを提案する。
論文 参考訳(メタデータ) (2020-04-09T16:26:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。