論文の概要: Fast dynamical similarity analysis
- arxiv url: http://arxiv.org/abs/2511.22828v1
- Date: Fri, 28 Nov 2025 01:27:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-01 19:47:55.740668
- Title: Fast dynamical similarity analysis
- Title(参考訳): 高速な動的類似性解析
- Authors: Arman Behrad, Mitchell Ostrow, Mohammad Taha Fakharian, Ila Fiete, Christian Beste, Shervin Safavi,
- Abstract要約: 動的類似性法は、動的システムの時間構造を比較するためのフレームワークを提供する。
本稿では,高速な動的類似性解析(fastDSA)を提案する。
我々は、fastDSAは、少なくとも以前の方法よりも桁違いに高速であることを示した。
- 参考スコア(独自算出の注目度): 8.262399199942761
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To understand how neural systems process information, it is often essential to compare one circuit with another, one brain with another, or data with a model. Traditional similarity measures ignore the dynamical processes underlying neural representations. Dynamical similarity methods offer a framework to compare the temporal structure of dynamical systems by embedding their (possibly) nonlinear dynamics into a globally linear space and there computing conjugacy metrics. However, identifying the best embedding and computing these metrics can be computationally slow. Here we introduce fast Dynamical Similarity Analysis (fastDSA), which is computationally far more efficient than previous methods while maintaining their accuracy and robustness. FastDSA introduces two key components that boost efficiency: (1) automatic selection of the effective model order of the Hankel (delay) embedding from the data via a data-driven singular-value threshold that identifies the informative subspace and discards noise to lower computational cost without sacrificing signal, and (2) a novel optimization procedure and objective, which replaces the slow exact orthogonality constraint in finding a minimal distance between dynamics matrices with a lightweight process to keep the search close to the space of orthogonal transformations. We demonstrate that fastDSA is at least an order of magnitude faster than the previous methods. Furthermore, we demonstrate that fastDSA has the properties of its ancestor, including its invariances and sensitivities to system dynamics. FastDSA, therefore, provides a computationally efficient and accurate method for dynamical similarity analysis.
- Abstract(参考訳): 神経システムが情報をどう処理するかを理解するためには、ある回路と別の回路、ある脳と別の脳、あるいはモデルとデータを比較することが不可欠であることが多い。
伝統的な類似度測定は、神経表現の基礎となる動的過程を無視する。
動的類似性法は、(おそらく)非線形力学を大域線型空間に埋め込むことで、動的システムの時間構造を比較するためのフレームワークを提供する。
しかし、これらのメトリクスの最良の埋め込みと計算は、計算が遅くなる可能性がある。
本稿では,高速な動的類似性解析(fastDSA)を提案する。
FastDSAは,(1)信号の犠牲を伴わない計算コストの低減を図ったデータ駆動の特異値しきい値によって,データから埋没したハンケル(遅延)のモデルオーダーを自動的に選択し,(2)動的行列間の最小距離を軽量なプロセスで探索し,直交変換の空間に近づき続けるという,遅い正確な直交制約を置き換えた,新しい最適化手順と目的を導入する。
我々は、fastDSAは、少なくとも以前の方法よりも桁違いに高速であることを示した。
さらに、ファストDSAは、系の力学に対する不変性や感度など、祖先の性質を持っていることを実証する。
したがって、FastDSAは動的類似性解析のための計算効率が高く正確な方法を提供する。
関連論文リスト
- Event-Aided Time-to-Collision Estimation for Autonomous Driving [28.13397992839372]
ニューロモルフィックなイベントベースカメラを用いて衝突時刻を推定する新しい手法を提案する。
提案アルゴリズムは, 事象データに適合する幾何モデルに対して, 効率的かつ高精度な2段階のアプローチで構成する。
合成データと実データの両方の実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-07-10T02:37:36Z) - A physics-informed neural network method for the approximation of slow invariant manifolds for the general class of stiff systems of ODEs [0.0]
我々は、遅い不変多様体(SIM)の発見のための物理インフォームドニューラルネットワーク(PINN)アプローチを提案する。
削減順序のブラックボックスサロゲートモデルを構成する他の機械学習(ML)アプローチとは対照的に,我々のアプローチはベクトル場を高速かつ低速なコンポーネントに分解する。
提案手法は,QSSA,PEA,CSPが提供する手法よりも,同等あるいは高い精度でSIM近似を提供することを示す。
論文 参考訳(メタデータ) (2024-03-18T09:10:39Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Benchmarking sparse system identification with low-dimensional chaos [1.5849413067450229]
カオスシステムのダイエット標準化データベースを利用して,スパース回帰変種を系統的にベンチマークする。
我々は,このオープンソースツールを用いて,システム識別の異なる手法を定量的に比較する方法を実証する。
いずれの場合も,SINDyの雑音頑健性を改善し,統計的比較を行うためにアンサンブルを用いた。
論文 参考訳(メタデータ) (2023-02-04T18:49:52Z) - A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive
Coding Networks [65.34977803841007]
予測符号化ネットワークは、ベイズ統計学と神経科学の両方にルーツを持つ神経科学にインスパイアされたモデルである。
シナプス重みに対する更新規則の時間的スケジュールを変更するだけで、元の規則よりもずっと効率的で安定したアルゴリズムが得られることを示す。
論文 参考訳(メタデータ) (2022-11-16T00:11:04Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
本研究は,ROM構築と動的識別の低減を組み合わせたデータ駆動型非侵入型フレームワークを提案する。
提案手法は、非線形力学(SINDy)のパラメトリックスパース同定によるオートエンコーダニューラルネットワークを利用して、低次元力学モデルを構築する。
これらは、システムパラメータの関数として周期的定常応答の進化を追跡し、過渡位相の計算を避け、不安定性と分岐を検出することを目的としている。
論文 参考訳(メタデータ) (2022-11-13T01:57:18Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Low-Rank Hankel Tensor Completion for Traffic Speed Estimation [7.346671461427793]
交通状態推定問題に対する純粋にデータ駆動型かつモデルフリーなソリューションを提案する。
このテンソル構造に低ランクな仮定を課すことで、大域的パターンと未知の複素局所力学の両方を近似することができる。
本研究では,合成シミュレーションデータと実世界の高分解能データの両方について数値実験を行い,提案モデルの有効性と優位性を実証した。
論文 参考訳(メタデータ) (2021-05-21T00:08:06Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。