論文の概要: A physics-informed neural network method for the approximation of slow invariant manifolds for the general class of stiff systems of ODEs
- arxiv url: http://arxiv.org/abs/2403.11591v1
- Date: Mon, 18 Mar 2024 09:10:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 15:57:28.191393
- Title: A physics-informed neural network method for the approximation of slow invariant manifolds for the general class of stiff systems of ODEs
- Title(参考訳): 物理インフォームドニューラルネットワークによるODEの強系の一般クラスに対する遅い不変多様体の近似
- Authors: Dimitrios G. Patsatzis, Lucia Russo, Constantinos Siettos,
- Abstract要約: 我々は、遅い不変多様体(SIM)の発見のための物理インフォームドニューラルネットワーク(PINN)アプローチを提案する。
削減順序のブラックボックスサロゲートモデルを構成する他の機械学習(ML)アプローチとは対照的に,我々のアプローチはベクトル場を高速かつ低速なコンポーネントに分解する。
提案手法は,QSSA,PEA,CSPが提供する手法よりも,同等あるいは高い精度でSIM近似を提供することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a physics-informed neural network (PINN) approach for the discovery of slow invariant manifolds (SIMs), for the most general class of fast/slow dynamical systems of ODEs. In contrast to other machine learning (ML) approaches that construct reduced order black box surrogate models using simple regression, and/or require a priori knowledge of the fast and slow variables, our approach, simultaneously decomposes the vector field into fast and slow components and provides a functional of the underlying SIM in a closed form. The decomposition is achieved by finding a transformation of the state variables to the fast and slow ones, which enables the derivation of an explicit, in terms of fast variables, SIM functional. The latter is obtained by solving a PDE corresponding to the invariance equation within the Geometric Singular Perturbation Theory (GSPT) using a single-layer feedforward neural network with symbolic differentiation. The performance of the proposed physics-informed ML framework is assessed via three benchmark problems: the Michaelis-Menten, the target mediated drug disposition (TMDD) reaction model and a fully competitive substrate-inhibitor(fCSI) mechanism. We also provide a comparison with other GPST methods, namely the quasi steady state approximation (QSSA), the partial equilibrium approximation (PEA) and CSP with one and two iterations. We show that the proposed PINN scheme provides SIM approximations, of equivalent or even higher accuracy, than those provided by QSSA, PEA and CSP, especially close to the boundaries of the underlying SIMs.
- Abstract(参考訳): 本稿では, 遅い不変多様体 (SIM) の発見のための物理インフォームドニューラルネットワーク (PINN) を提案する。
単純回帰を用いた低次ブラックボックスサロゲートモデルを構築する他の機械学習(ML)アプローチとは対照的に,我々のアプローチでは,ベクトル場を高速かつ低速なコンポーネントに同時に分解し,基礎となるSIMの機能をクローズドな形で提供する。
この分解は、状態変数から高速で遅い変数への変換を見つけることで達成される。
後者は、記号微分を持つ単層フィードフォワードニューラルネットワークを用いて、幾何学特異摂動理論(GSPT)内の不変方程式に対応するPDEを解くことにより得られる。
提案する物理インフォームドMLフレームワークの性能は,Michaelis-Menten,TMDD反応モデル,完全に競合する基質阻害剤(fCSI)機構の3つのベンチマーク問題によって評価される。
また、他のGPST法、すなわち準定常状態近似(QSSA)、部分平衡近似(PEA)、CSPを1回と2回繰り返して比較する。
提案手法は,QSSA,PEA,CSPが提供するもの,特に基礎となるSIMの境界に近いものよりも,同等あるいは高い精度でSIM近似を提供することを示す。
関連論文リスト
- Physics-informed neural networks need a physicist to be accurate: the case of mass and heat transport in Fischer-Tropsch catalyst particles [0.3926357402982764]
物理インフォームドニューラルネットワーク(PINN)は、機械学習の迅速かつ自動化された能力と、理論物理学に根ざしたシミュレーションの精度と信頼性を融合して、影響力のある技術として登場した。
しかし、PINNの広範な採用は信頼性の問題、特に入力パラメータ範囲の極端ではまだ妨げられている。
ドメイン知識に基づくPINNアーキテクチャの変更を提案する。
論文 参考訳(メタデータ) (2024-11-15T08:55:31Z) - Burgers' pinns with implicit euler transfer learning [0.0]
バーガーズ方程式は、いくつかの現象の計算モデルにおいて確立されたテストケースである。
本稿では,バーガース方程式を解くために,暗黙のオイラー変換学習手法を用いた物理情報ニューラルネットワーク(PINN)の適用について述べる。
論文 参考訳(メタデータ) (2023-10-23T20:15:45Z) - Slow Invariant Manifolds of Singularly Perturbed Systems via
Physics-Informed Machine Learning [0.0]
特異摂動系の遅い不変多様体(SIM)を近似するための物理インフォームド・機械学習(PIML)手法を提案する。
提案手法では,従来のGSPT法よりも精度の高い近似法が提案されている。
また、学習過程において必要となる微分の記号的、自動的、数値的近似の計算コストの比較を行う。
論文 参考訳(メタデータ) (2023-09-14T14:10:22Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Adaptive physics-informed neural operator for coarse-grained
non-equilibrium flows [0.0]
このフレームワークは、階層的かつ適応的なディープラーニング戦略を通じて、次元還元とニューラル演算子を組み合わせる。
提案したサロゲートのアーキテクチャは木として構成され、葉ノードは別々の神経オペレータブロックを表す。
0-Dのシナリオでは、提案されたMLフレームワークは、最大相対誤差が4.5%である約30種の力学を適応的に予測することができる。
論文 参考訳(メタデータ) (2022-10-27T23:26:57Z) - Hybrid Physical-Neural ODEs for Fast N-body Simulations [0.22419496088582863]
我々は、宇宙論的N体シミュレーションのためのParticle-Meshスキームから生じる小規模近似を補正する新しいスキームを提案する。
提案手法は相互相関係数においてPGDよりも優れており,シミュレーション設定の変化に対してより堅牢であることがわかった。
論文 参考訳(メタデータ) (2022-07-12T13:06:06Z) - GradInit: Learning to Initialize Neural Networks for Stable and
Efficient Training [59.160154997555956]
ニューラルネットワークを初期化するための自動化およびアーキテクチャ手法であるgradinitを提案する。
各ネットワーク層の分散は、SGDまたはAdamの単一ステップが最小の損失値をもたらすように調整される。
また、学習率のウォームアップを伴わずに、オリジナルのPost-LN Transformerを機械翻訳用にトレーニングすることもできる。
論文 参考訳(メタデータ) (2021-02-16T11:45:35Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。