論文の概要: Functional Stability of Software-Hardware Neural Network Implementation The NeuroComp Project
- arxiv url: http://arxiv.org/abs/2512.04867v1
- Date: Thu, 04 Dec 2025 14:49:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-05 21:11:46.230223
- Title: Functional Stability of Software-Hardware Neural Network Implementation The NeuroComp Project
- Title(参考訳): NeuroCompプロジェクトにおけるソフトウェアハードウェアニューラルネットワーク実装の機能安定性
- Authors: Bychkov Oleksii, Senysh Taras,
- Abstract要約: 本稿では,個々のニューロンレベルでのハードウェア冗長性を通じて,ニューラルネットワークの機能安定性を確保するための革新的なアプローチを提案する。
各ニューロンは個別のマイクロコンピュータ(ESP32)上に実装され、個々の計算ノードが故障してもシステムは機能し続ける。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an innovative approach to ensuring functional stability of neural networks through hardware redundancy at the individual neuron level. Unlike the classical Dropout method, which is used during training for regularization purposes, the proposed system ensures resilience to hardware failures during network operation. Each neuron is implemented on a separate microcomputer (ESP32), allowing the system to continue functioning even when individual computational nodes fail.
- Abstract(参考訳): 本稿では,個々のニューロンレベルでのハードウェア冗長性を通じて,ニューラルネットワークの機能安定性を確保するための革新的なアプローチを提案する。
正規化のためのトレーニングで使用される古典的なドロップアウト方式とは異なり,提案方式はネットワーク運用時のハードウェア障害に対するレジリエンスを確保する。
各ニューロンは個別のマイクロコンピュータ(ESP32)上に実装され、個々の計算ノードが故障してもシステムは機能し続ける。
関連論文リスト
- Bruno: Backpropagation Running Undersampled for Novel device Optimization [37.69303106863453]
強誘電体非揮発性デバイス(RRAM)上に構築されたスパイキングニューロンとシナプスに基づくハードウェアのためのニューラルネットワークのトレーニングのためのボトムアップアプローチを提案する。
トレーニングアルゴリズムは、RRAMと強誘電体集積火炎ニューロンに基づく量子化されたシナプスからなるネットワークでデータセット上でテストされる。
論文 参考訳(メタデータ) (2025-05-23T12:06:43Z) - Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons [0.26963330643873434]
本稿では, 相補的金属酸化物半導体(CMOS)プラットフォーム上でのハードウェアフレンドリーな物理貯水池計算のためのスパイクニューラルネットワーク(SNN)を提案する。
短期記憶と排他的ORタスクによるRCと、97.7%の精度で音声桁認識タスクを実演する。
論文 参考訳(メタデータ) (2024-09-18T00:23:00Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - GradINN: Gradient Informed Neural Network [2.287415292857564]
物理情報ニューラルネットワーク(PINN)にヒントを得た手法を提案する。
GradINNは、システムの勾配に関する事前の信念を利用して、予測関数の勾配を全ての入力次元にわたって制限する。
非時間依存システムにまたがる多様な問題に対するGradINNの利点を実証する。
論文 参考訳(メタデータ) (2024-09-03T14:03:29Z) - Neuromorphic analog circuits for robust on-chip always-on learning in
spiking neural networks [1.9809266426888898]
混合信号ニューロモルフィックシステムは、極端コンピューティングタスクを解決するための有望なソリューションである。
彼らのスパイクニューラルネットワーク回路は、連続的にセンサーデータをオンラインに処理するために最適化されている。
我々は,短期的アナログ力学と長期的三状態離散化機構を備えたオンチップ学習回路を設計する。
論文 参考訳(メタデータ) (2023-07-12T11:14:25Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Asynchronous Decentralized Learning of a Neural Network [49.15799302636519]
我々は、ARockと呼ばれる非同期コンピューティングフレームワークを利用して、分散シナリオでフィードフォワードニューラルネットワーク(SSFN)を推定する自己サイズ推定と呼ばれるディープニューラルネットワークを学習する。
非同期分散SSFNは1ノードのアクティベーションと一方の通信を許容することで通信ボトルネックを緩和し、通信オーバーヘッドを大幅に低減する。
実験結果において、非同期dSSFNと従来の同期dSSFNを比較し、特に通信ネットワークが疎い場合に、非同期dSSFNの競合性能を示す。
論文 参考訳(メタデータ) (2020-04-10T15:53:37Z) - ResiliNet: Failure-Resilient Inference in Distributed Neural Networks [56.255913459850674]
ResiliNetは、分散ニューラルネットワークにおいて物理ノード障害に耐性を持たせるためのスキームである。
Failoutは、ドロップアウトを使用したトレーニング中の物理ノード障害条件をシミュレートし、分散ニューラルネットワークのレジリエンスを改善するように設計されている。
論文 参考訳(メタデータ) (2020-02-18T05:58:24Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
我々は, プレ・グポストシナプスのパートナーを常に切り替えることにより, 構造的可塑性を達成するための戦略を提案する。
我々はこのアルゴリズムをアナログニューロモルフィックシステムBrainScaleS-2に実装した。
ネットワークトポロジを最適化する能力を示し、簡単な教師付き学習シナリオで実装を評価した。
論文 参考訳(メタデータ) (2019-12-27T10:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。