論文の概要: Statistics of Min-max Normalized Eigenvalues in Random Matrices
- arxiv url: http://arxiv.org/abs/2512.15427v1
- Date: Wed, 17 Dec 2025 13:19:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-18 17:06:27.000386
- Title: Statistics of Min-max Normalized Eigenvalues in Random Matrices
- Title(参考訳): ランダム行列におけるMin-max正規化固有値の統計
- Authors: Hyakka Nakada, Shu Tanaka,
- Abstract要約: 本研究では,無作為行列におけるmin-max正規化固有値の統計的性質について検討する。
確率行列の行列分解時に生じる残差を導出する。
- 参考スコア(独自算出の注目度): 0.7519872646378835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Random matrix theory has played an important role in various areas of pure mathematics, mathematical physics, and machine learning. From a practical perspective of data science, input data are usually normalized prior to processing. Thus, this study investigates the statistical properties of min-max normalized eigenvalues in random matrices. Previously, the effective distribution for such normalized eigenvalues has been proposed. In this study, we apply it to evaluate a scaling law of the cumulative distribution. Furthermore, we derive the residual error that arises during matrix factorization of random matrices. We conducted numerical experiments to verify these theoretical predictions.
- Abstract(参考訳): ランダム行列理論は純粋数学、数学物理学、機械学習の様々な分野において重要な役割を果たしてきた。
データサイエンスの実践的な観点では、通常、入力データは処理の前に正規化される。
そこで本研究では,無作為行列におけるmin-max正規化固有値の統計的性質について検討した。
これまで、そのような正規化固有値の効果的な分布が提案されてきた。
本研究では,累積分布のスケーリング法則を評価するために本法を適用した。
さらに,無作為行列の行列分解時に生じる残差を導出する。
我々はこれらの理論予測を検証するために数値実験を行った。
関連論文リスト
- Entrywise error bounds for low-rank approximations of kernel matrices [55.524284152242096]
切り抜き固有分解を用いて得られたカーネル行列の低ランク近似に対するエントリーワイド誤差境界を導出する。
重要な技術的革新は、小さな固有値に対応するカーネル行列の固有ベクトルの非局在化結果である。
我々は、合成および実世界のデータセットの集合に関する実証的研究により、我々の理論を検証した。
論文 参考訳(メタデータ) (2024-05-23T12:26:25Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - On confidence intervals for precision matrices and the
eigendecomposition of covariance matrices [20.20416580970697]
本稿では,固定次元の共分散行列の固有ベクトルの個々のエントリに対する信頼性境界の計算に挑戦する。
逆共分散行列、いわゆる精度行列の成分を束縛する手法を導出する。
これらの結果の応用として,精度行列の非ゼロ値のテストを可能にする新しい統計テストを示す。
論文 参考訳(メタデータ) (2022-08-25T10:12:53Z) - When Random Tensors meet Random Matrices [50.568841545067144]
本稿では,ガウス雑音を伴う非対称次数-$d$スパイクテンソルモデルについて検討する。
検討したモデルの解析は、等価なスパイクされた対称テクシットブロック-ワイドランダム行列の解析に起因していることを示す。
論文 参考訳(メタデータ) (2021-12-23T04:05:01Z) - Test Set Sizing Via Random Matrix Theory [91.3755431537592]
本稿ではランダム行列理論の手法を用いて、単純な線形回帰に対して理想的なトレーニング-テストデータ分割を求める。
それは「理想」を整合性計量を満たすものとして定義し、すなわち経験的モデル誤差は実際の測定ノイズである。
本論文は,任意のモデルのトレーニングとテストサイズを,真に最適な方法で解決した最初の論文である。
論文 参考訳(メタデータ) (2021-12-11T13:18:33Z) - Learning with Density Matrices and Random Features [44.98964870180375]
密度行列は、量子系の統計状態を記述する。
量子系の量子的不確実性と古典的不確実性の両方を表現することは強力な形式主義である。
本稿では,機械学習モデルのビルディングブロックとして密度行列をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2021-02-08T17:54:59Z) - On Random Matrices Arising in Deep Neural Networks: General I.I.D. Case [0.0]
本研究では, ニューラルネットワーク解析に係わる無作為行列の積の特異値分布について検討した。
我々は、[22] の結果を一般化するために、[22] の確率行列理論のテクニックの、より簡潔な別のバージョンを使用します。
論文 参考訳(メタデータ) (2020-11-20T14:39:24Z) - On Random Matrices Arising in Deep Neural Networks. Gaussian Case [1.6244541005112747]
本稿では,深部ニューラルネットワークの解析において生じるランダム行列の積の特異値の分布を扱う。
この問題は、近年の研究では、自由確率論の技術を用いて検討されている。
論文 参考訳(メタデータ) (2020-01-17T08:30:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。