論文の概要: BumpNet: A Sparse Neural Network Framework for Learning PDE Solutions
- arxiv url: http://arxiv.org/abs/2512.17198v1
- Date: Fri, 19 Dec 2025 03:25:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-22 19:25:54.229925
- Title: BumpNet: A Sparse Neural Network Framework for Learning PDE Solutions
- Title(参考訳): BumpNet: PDEソリューションを学習するためのスパースニューラルネットワークフレームワーク
- Authors: Shao-Ting Chiu, Ioannis G. Kevrekidis, Ulisses Braga-Neto,
- Abstract要約: PDE数値解と演算子学習のためのスパースニューラルネットワークフレームワークであるBumpNetを紹介する。
形状、位置、振幅を含む基底関数の全てのパラメータは、完全に訓練可能である。
- 参考スコア(独自算出の注目度): 2.3513645401551337
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce BumpNet, a sparse neural network framework for PDE numerical solution and operator learning. BumpNet is based on meshless basis function expansion, in a similar fashion to radial-basis function (RBF) networks. Unlike RBF networks, the basis functions in BumpNet are constructed from ordinary sigmoid activation functions. This enables the efficient use of modern training techniques optimized for such networks. All parameters of the basis functions, including shape, location, and amplitude, are fully trainable. Model parsimony and h-adaptivity are effectively achieved through dynamically pruning basis functions during training. BumpNet is a general framework that can be combined with existing neural architectures for learning PDE solutions: here, we propose Bump-PINNs (BumpNet with physics-informed neural networks) for solving general PDEs; Bump-EDNN (BumpNet with evolutionary deep neural networks) to solve time-evolution PDEs; and Bump-DeepONet (BumpNet with deep operator networks) for PDE operator learning. Bump-PINNs are trained using the same collocation-based approach used by PINNs, Bump-EDNN uses a BumpNet only in the spatial domain and uses EDNNs to advance the solution in time, while Bump-DeepONets employ a BumpNet regression network as the trunk network of a DeepONet. Extensive numerical experiments demonstrate the efficiency and accuracy of the proposed architecture.
- Abstract(参考訳): PDE数値解と演算子学習のためのスパースニューラルネットワークフレームワークであるBumpNetを紹介する。
BumpNetは、ラジアル基底関数(RBF)ネットワークと同様のメッシュレス基底関数拡張に基づいている。
RBFネットワークとは異なり、BumpNetの基底関数は通常のシグモイド活性化関数から構成される。
これにより、そのようなネットワークに最適化されたモダンなトレーニング技術の効率的な利用が可能になる。
形状、位置、振幅を含む基底関数の全てのパラメータは、完全に訓練可能である。
モデルパーシモニーとh適応性は、トレーニング中に動的プルーニング基底関数によって効果的に達成される。
ここでは、一般のPDEを解決するためのBump-PINN(物理インフォームドニューラルネットワークを備えたBumpNet)、時間進化PDEを解決するためのBump-EDNN(進化的深層ニューラルネットワークを備えたBumpNet)、PDE演算子学習のためのBump-DeepONet(深部演算子ネットワークを備えたBumpNet)を提案する。
Bump-PINNはPINNと同じコロケーションベースのアプローチでトレーニングされており、Bump-EDNNは空間領域でのみBumpNetを使用し、EDNNを使用してソリューションを時間的に前進させ、Bump-DeepONetsはDeepONetのトランクネットワークとしてBumpNet回帰ネットワークを使用する。
大規模な数値実験により提案アーキテクチャの効率性と精度が示された。
関連論文リスト
- GIT-Net: Generalized Integral Transform for Operator Learning [58.13313857603536]
本稿では、部分微分方程式(PDE)演算子を近似するディープニューラルネットワークアーキテクチャであるGIT-Netを紹介する。
GIT-Netは、PDEを定義するためによく使われる微分作用素が、特殊機能基底で表現されるときに、しばしば同義的に表現されるという事実を利用する。
数値実験により、GIT-Netは競争力のあるニューラルネットワーク演算子であり、様々なPDE問題に対して小さなテストエラーと低い評価を示すことが示された。
論文 参考訳(メタデータ) (2023-12-05T03:03:54Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - PhyGNNet: Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [12.385926494640932]
本稿では,グラフニューラルネットワークの基本値から偏微分方程式を解くためのPhyGNNetを提案する。
特に、計算領域を正規グリッドに分割し、グリッド上の偏微分演算子を定義し、PhyGNNetモデルを構築する最適化のためにネットワークのpde損失を構築する。
論文 参考訳(メタデータ) (2022-08-07T13:33:34Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - End-to-End Learning of Deep Kernel Acquisition Functions for Bayesian
Optimization [39.56814839510978]
ニューラルネットワークに基づくカーネルを用いたベイズ最適化のためのメタラーニング手法を提案する。
我々のモデルは、複数のタスクから強化学習フレームワークによって訓練されている。
3つのテキスト文書データセットを用いた実験において,提案手法が既存の手法よりも優れたBO性能を実現することを示す。
論文 参考訳(メタデータ) (2021-11-01T00:42:31Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - A Framework For Pruning Deep Neural Networks Using Energy-Based Models [45.4796383952516]
典型的なディープニューラルネットワーク(DNN)は、多数のトレーニング可能なパラメータを持つ。
そこで本研究では,人口統計量に基づく大域的最適化手法に基づくDNNの刈り取りフレームワークを提案する。
ResNets、AlexNet、SqueezeNetの実験では、トレーニング可能なパラメータの50ドル以上のプルーニングレートを示している。
論文 参考訳(メタデータ) (2021-02-25T21:44:19Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
我々は,複雑なコンピュータビジョンアーキテクチャに適した効率的な深部BNNを目指している。
可変オートエンコーダ(VAE)を利用して、各ネットワーク層におけるパラメータの相互作用と潜在分布を学習する。
我々のアプローチであるLatent-Posterior BNN(LP-BNN)は、最近のBatchEnsemble法と互換性があり、高い効率(トレーニングとテストの両方における計算とメモリ)のアンサンブルをもたらす。
論文 参考訳(メタデータ) (2020-12-04T19:50:09Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。