論文の概要: GIT-Net: Generalized Integral Transform for Operator Learning
- arxiv url: http://arxiv.org/abs/2312.02450v1
- Date: Tue, 5 Dec 2023 03:03:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-06 17:04:31.109758
- Title: GIT-Net: Generalized Integral Transform for Operator Learning
- Title(参考訳): GIT-Net:演算子学習のための一般化積分変換
- Authors: Chao Wang and Alexandre Hoang Thiery
- Abstract要約: 本稿では、部分微分方程式(PDE)演算子を近似するディープニューラルネットワークアーキテクチャであるGIT-Netを紹介する。
GIT-Netは、PDEを定義するためによく使われる微分作用素が、特殊機能基底で表現されるときに、しばしば同義的に表現されるという事実を利用する。
数値実験により、GIT-Netは競争力のあるニューラルネットワーク演算子であり、様々なPDE問題に対して小さなテストエラーと低い評価を示すことが示された。
- 参考スコア(独自算出の注目度): 58.13313857603536
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article introduces GIT-Net, a deep neural network architecture for
approximating Partial Differential Equation (PDE) operators, inspired by
integral transform operators. GIT-NET harnesses the fact that differential
operators commonly used for defining PDEs can often be represented
parsimoniously when expressed in specialized functional bases (e.g., Fourier
basis). Unlike rigid integral transforms, GIT-Net parametrizes adaptive
generalized integral transforms with deep neural networks. When compared to
several recently proposed alternatives, GIT-Net's computational and memory
requirements scale gracefully with mesh discretizations, facilitating its
application to PDE problems on complex geometries. Numerical experiments
demonstrate that GIT-Net is a competitive neural network operator, exhibiting
small test errors and low evaluations across a range of PDE problems. This
stands in contrast to existing neural network operators, which typically excel
in just one of these areas.
- Abstract(参考訳): 本稿では、積分変換演算子にインスパイアされた部分微分方程式(PDE)演算子を近似するディープニューラルネットワークアーキテクチャであるGIT-Netを紹介する。
GIT-NETは、PDEを定義するためによく使われる微分作用素が、特殊機能基底(例えばフーリエ基底)で表現されるときに、しばしば同義的に表現されるという事実を利用する。
剛性積分変換とは異なり、GIT-Netは深いニューラルネットワークで適応的な一般化積分変換をパラメトリズする。
最近提案されたいくつかの代替案と比較すると、git-netの計算とメモリ要件はメッシュの離散化によって優雅にスケールし、複雑なジオメトリのpde問題への応用を容易にする。
数値実験により、GIT-Netは競争力のあるニューラルネットワーク演算子であり、様々なPDE問題に対して小さなテストエラーと低い評価を示すことが示された。
これは、既存のニューラルネットワークオペレータとは対照的で、通常はこれらの領域の1つで優れている。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Neural Control Variates with Automatic Integration [49.91408797261987]
本稿では,任意のニューラルネットワークアーキテクチャから学習可能なパラメトリック制御関数を構築するための新しい手法を提案する。
我々はこのネットワークを用いて積分器の反微分を近似する。
我々はウォーク・オン・スフィア・アルゴリズムを用いて偏微分方程式を解くために本手法を適用した。
論文 参考訳(メタデータ) (2024-09-23T06:04:28Z) - Neural Green's Operators for Parametric Partial Differential Equations [0.0]
この研究は、線形偏微分方程式(PDE)のパラメトリック族に対する解演算子を学習する新しいニューラル演算子ネットワークアーキテクチャであるニューラルグリーン演算子(NGO)を導入する。
NGOはディープ・オペレーター・ネットワーク(DeepONets)や可変ミメティック・オペレーター・ネットワーク(VarMiONs)に類似している。
論文 参考訳(メタデータ) (2024-06-04T00:02:52Z) - Functional SDE approximation inspired by a deep operator network
architecture [0.0]
ディープニューラルネットワークによる微分方程式(SDE)の近似解の導出と解析を行う。
このアーキテクチャはDeep Operator Networks(DeepONets)の概念にインスパイアされたもので、ネットワークに表される基盤の削減という観点からの演算子学習に基づいている。
提案したSDEONetアーキテクチャは,Wienerカオス拡張の最適スパース切り込みを学習することにより,指数複雑性の問題を緩和することを目的としている。
論文 参考訳(メタデータ) (2024-02-05T14:12:35Z) - Energy-Dissipative Evolutionary Deep Operator Neural Networks [12.764072441220172]
エネルギー分散進化的深層演算子ニューラルネットワーク(Energy-Dissipative Evolutionary Deep Operator Neural Network)は、ニューラルネットワークを学習するオペレータである。
偏微分方程式のクラスに対する数値解をシードするように設計されている。
論文 参考訳(メタデータ) (2023-06-09T22:11:16Z) - DOSnet as a Non-Black-Box PDE Solver: When Deep Learning Meets Operator
Splitting [12.655884541938656]
我々はDeep Operator-Splitting Network (DOSnet) と名付けた学習型PDEソルバを開発した。
DOSnetは物理規則から構築され、基礎となるダイナミクスを管理する演算子は学習可能なパラメータを含む。
我々は、演算子分解可能な微分方程式のいくつかのタイプでそれを訓練し、検証する。
論文 参考訳(メタデータ) (2022-12-11T18:23:56Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Learning the Solution Operator of Boundary Value Problems using Graph
Neural Networks [0.0]
グラフニューラルネットワーク(GNN)とスペクトルグラフ畳み込みを用いた2つの異なる時間非依存PDEに対する一般解演算子を設計する。
我々は、様々な形状と不均一性の有限要素ソルバからシミュレーションデータを用いてネットワークを訓練する。
有限要素メッシュの変動が多岐にわたる多様なデータセット上でのトレーニングが,優れた一般化結果を得るための鍵となる要素であることがわかった。
論文 参考訳(メタデータ) (2022-06-28T15:39:06Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。