論文の概要: Limits of quantum generative models with classical sampling hardness
- arxiv url: http://arxiv.org/abs/2512.24801v1
- Date: Wed, 31 Dec 2025 11:40:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-01 23:27:28.642247
- Title: Limits of quantum generative models with classical sampling hardness
- Title(参考訳): 古典的サンプリング硬度をもつ量子生成モデルの極限
- Authors: Sabrina Herbst, Ivona Brandić, Adrián Pérez-Salinas,
- Abstract要約: 出力分布の観点から量子生成モデルについて検討する。
量子的優位性を示すモデルを含む、アンチ集中が平均的にトレーニングできないモデルがあることが分かりました。
生成モデルでは依然として量子的優位性が見いだせるが、その源泉は反集束と区別されなければならない。
- 参考スコア(独自算出の注目度): 2.321580694317368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sampling tasks have been successful in establishing quantum advantages both in theory and experiments. This has fueled the use of quantum computers for generative modeling to create samples following the probability distribution underlying a given dataset. In particular, the potential to build generative models on classically hard distributions would immediately preclude classical simulability, due to theoretical separations. In this work, we study quantum generative models from the perspective of output distributions, showing that models that anticoncentrate are not trainable on average, including those exhibiting quantum advantage. In contrast, models outputting data from sparse distributions can be trained. We consider special cases to enhance trainability, and observe that this opens the path for classical algorithms for surrogate sampling. This observed trade-off is linked to verification of quantum processes. We conclude that quantum advantage can still be found in generative models, although its source must be distinct from anticoncentration.
- Abstract(参考訳): サンプリングタスクは理論と実験の両方において量子アドバンテージを確立することに成功している。
これにより、生成モデリングに量子コンピュータを用いることで、与えられたデータセットの下の確率分布に従ってサンプルを作成することができる。
特に、古典的に硬い分布に生成モデルを構築する可能性は、理論的な分離のため、すぐに古典的なシミュラビリティを阻害する。
本研究では, 出力分布の観点から量子生成モデルについて検討し, 量子優位性を示すものを含め, 反集中型モデルでは平均でトレーニングできないことを示す。
対照的に、スパース分布からデータを出力するモデルをトレーニングすることができる。
我々は、訓練性を高めるための特別な事例を検討し、これが古典的アルゴリズムによるサロゲートサンプリングの道を開くことを観察する。
この観測されたトレードオフは、量子過程の検証と関連している。
生成モデルでは依然として量子的優位性が見いだせるが、その源泉は反集束と区別されなければならない。
関連論文リスト
- Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning [79.65014491424151]
量子離散化拡散確率モデル(QD3PM)を提案する。
これは、指数関数的に大きなヒルベルト空間における拡散と denoising を通じて合同確率学習を可能にする。
本稿では,共同分布学習における量子的優位性を生かして,生成モデルの新たな理論的パラダイムを確立する。
論文 参考訳(メタデータ) (2025-05-08T11:48:21Z) - Quantum Latent Diffusion Models [65.16624577812436]
本稿では,古典的潜伏拡散モデルの確立した考え方を活用する量子拡散モデルの潜在的バージョンを提案する。
これには、従来のオートエンコーダを使用してイメージを削減し、次に潜時空間の変動回路で操作する。
この結果は、量子バージョンが生成した画像のより良い測定値を得ることによって証明されたように、量子バージョンを使用することの利点を示している。
論文 参考訳(メタデータ) (2025-01-19T21:24:02Z) - Quantum-Noise-Driven Generative Diffusion Models [1.6385815610837167]
実量子システムで実験的に検証できる3つの量子ノイズ駆動生成拡散モデルを提案する。
アイデアは、特にコヒーレンス、絡み合い、ノイズの間の非自明な相互作用を、ユニークな量子的特徴を活用することである。
我々の結果は、新しい量子インスパイアされた、あるいは量子ベースの生成拡散アルゴリズムの道を開くことが期待されている。
論文 参考訳(メタデータ) (2023-08-23T09:09:32Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - Protocols for classically training quantum generative models on
probability distributions [17.857341127079305]
量子生成モデリング(QGM)は、量子状態を作成し、サンプルを隠れた(あるいは既知の)確率分布として生成することに依存する。
そこで本研究では,QGMの高速勾配を考慮した回路に基づく古典的学習手法を提案する。
通常のデスクトップコンピュータ上で最大30キュービットの確率分布を用いたIQP回路のエンドツーエンドのトレーニングを数値的に示す。
論文 参考訳(メタデータ) (2022-10-24T17:57:09Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
量子回路ボルンマシン(QCBM)と量子生成逆ネットワーク(QGAN)の学習可能性について検討する。
まず、QCBMの一般化能力を解析し、量子デバイスがターゲット分布に直接アクセスできる際の優位性を同定する。
次に、QGANの一般化誤差境界が、採用されるAnsatz、クォーディットの数、入力状態に依存することを示す。
論文 参考訳(メタデータ) (2022-05-10T08:05:59Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Learnability of the output distributions of local quantum circuits [53.17490581210575]
2つの異なるオラクルモデルにおいて、量子回路Bornマシンの学習可能性について検討する。
我々はまず,超対数深度クリフォード回路の出力分布がサンプル効率良く学習できないという負の結果を示した。
より強力なオラクルモデル、すなわちサンプルに直接アクセスすると、局所的なクリフォード回路の出力分布は計算効率よくPACを学習可能であることを示す。
論文 参考訳(メタデータ) (2021-10-11T18:00:20Z) - Enhancing Generative Models via Quantum Correlations [1.6099403809839032]
確率分布から抽出したサンプルを用いた生成モデリングは教師なし機械学習の強力なアプローチである。
このような量子相関が生成モデリングの強力な資源となることを理論的に示す。
この分離を標準的な機械学習データセットで数値的にテストし、実用的な問題に耐えることを示します。
論文 参考訳(メタデータ) (2021-01-20T22:57:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。