論文の概要: Minimum distance classification for nonlinear dynamical systems
- arxiv url: http://arxiv.org/abs/2601.04058v1
- Date: Wed, 07 Jan 2026 16:21:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-09 02:15:23.685321
- Title: Minimum distance classification for nonlinear dynamical systems
- Title(参考訳): 非線形力学系における最小距離分類
- Authors: Dominique Martinez,
- Abstract要約: そこで我々はDynafitを提案する。Dynafitは、トレーニング軌跡と基礎となるダイナミックスの間の距離メトリックを学習するためのカーネルベースの手法である。
そこで,Dynafitは非線形力学系やセンサを含む様々な分類タスクに適用可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of classifying trajectory data generated by some nonlinear dynamics, where each class corresponds to a distinct dynamical system. We propose Dynafit, a kernel-based method for learning a distance metric between training trajectories and the underlying dynamics. New observations are assigned to the class with the most similar dynamics according to the learned metric. The learning algorithm approximates the Koopman operator which globally linearizes the dynamics in a (potentially infinite) feature space associated with a kernel function. The distance metric is computed in feature space independently of its dimensionality by using the kernel trick common in machine learning. We also show that the kernel function can be tailored to incorporate partial knowledge of the dynamics when available. Dynafit is applicable to various classification tasks involving nonlinear dynamical systems and sensors. We illustrate its effectiveness on three examples: chaos detection with the logistic map, recognition of handwritten dynamics and of visual dynamic textures.
- Abstract(参考訳): 非線形力学によって生成される軌道データの分類の問題に対処し、各クラスが異なる力学系に対応する。
そこで我々はDynafitを提案する。Dynafitは、トレーニング軌跡と基礎となるダイナミックスの間の距離メトリックを学習するためのカーネルベースの手法である。
学習された測定値に従って、最も類似したダイナミクスを持つクラスに、新しい観測値が割り当てられる。
学習アルゴリズムは、カーネル関数に関連する(潜在的に無限な)特徴空間のダイナミクスを大域的に線形化するクープマン作用素を近似する。
距離計量は、機械学習で一般的なカーネルトリックを用いて、その次元とは独立して特徴空間で計算される。
また、カーネル関数は、利用可能なときのダイナミックスの部分的知識を組み込むように調整可能であることも示している。
ダイナフィットは、非線形力学系やセンサーを含む様々な分類タスクに適用できる。
本稿では,ロジスティックマップを用いたカオス検出,手書きダイナミックスの認識,視覚的動的テクスチャの3つの例について説明する。
関連論文リスト
- Disordered Dynamics in High Dimensions: Connections to Random Matrices and Machine Learning [52.26396748560348]
ランダム行列によって駆動される高次元力学系について概説する。
機械学習理論における学習と一般化の単純なモデルへの応用に焦点を当てる。
論文 参考訳(メタデータ) (2026-01-03T00:12:32Z) - Learning System Dynamics without Forgetting [60.08612207170659]
本研究では,CDL(Continuous Dynamics Learning)の問題,タスク構成の検証,既存手法の適用性について検討する。
本稿では、LG-ODEとサブネットワーク学習の長所をモデムスイッチングモジュールと統合したモードスイッチンググラフODE(MS-GODE)モデルを提案する。
CDLのための生体動態システムの新しいベンチマーク、Bio-CDLを構築し、異なるダイナミクスを持つ多様なシステムを特徴付ける。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Learning dynamical systems: an example from open quantum system dynamics [0.0]
我々は、デファスゲートと結合した小さなスピン鎖のダイナミクスについて研究する。
クープマン演算子学習は, 密度行列の進化だけでなく, システムに付随するすべての物理観測可能量についても, 効率的に学習する手法であることを示す。
論文 参考訳(メタデータ) (2022-11-12T14:36:13Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
本稿では,時系列データの非定常および非線形の複雑なダイナミクスを表現した新しい分解力学系モデルを提案する。
我々のモデルは辞書学習によって訓練され、最近の結果を利用してスパースベクトルを時間とともに追跡する。
連続時間と離散時間の両方の指導例において、我々のモデルは元のシステムによく近似できることを示した。
論文 参考訳(メタデータ) (2022-06-07T02:25:38Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
Koopman演算子は非線形系の線形記述を可能にする数学的ツールである。
本稿では,その核となる部分を同一フレームワークのデュアルバージョンとして捉え,それらをカーネルフレームワークに組み込む。
カーネルメソッドとKoopman演算子との強力なリンクを確立し、Kernel関数を通じて後者を推定する。
論文 参考訳(メタデータ) (2021-03-25T11:08:26Z) - Extraction of Discrete Spectra Modes from Video Data Using a Deep
Convolutional Koopman Network [0.0]
クープマン理論の最近の深層学習拡張は、非線形力学系のコンパクトで解釈可能な表現を可能にした。
ディープ・クープマン・ネットワークはコープマン固有関数を学習し、座標変換を捉え、システムダイナミクスを大域的に線形化する。
離散スペクトルを持つ力学系における独立モードの自動同定における深い畳み込みクープマンネットワーク(CKN)の機能を示す。
論文 参考訳(メタデータ) (2020-10-19T06:26:29Z) - Learning Dynamical Systems with Side Information [2.28438857884398]
いくつかの軌跡のノイズ観測から力学系を学習するための枠組みを提案する。
多くのアプリケーションで自然に発生する6種類のサイド情報を識別する。
本研究では,物理・細胞生物学における基礎モデルの力学を学習するための側面情報の付加価値と,疫学におけるモデルの力学の学習と制御について述べる。
論文 参考訳(メタデータ) (2020-08-23T23:30:48Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。