論文の概要: Neuromorphic FPGA Design for Digital Signal Processing
- arxiv url: http://arxiv.org/abs/2601.07069v1
- Date: Sun, 11 Jan 2026 21:21:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-13 19:08:01.14725
- Title: Neuromorphic FPGA Design for Digital Signal Processing
- Title(参考訳): ディジタル信号処理のためのニューロモルフィックFPGA設計
- Authors: Justin London,
- Abstract要約: ニューロモルフィックコンピューティングの基礎、スパイクニューラルネットワーク(SNN)、およびメムリスタを分析し、議論する。
ニューロモルフィックコンピューティングは、デジタル信号処理(DSP)のためのFPGA設計に適用される
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, the foundations of neuromorphic computing, spiking neural networks (SNNs) and memristors, are analyzed and discussed. Neuromorphic computing is then applied to FPGA design for digital signal processing (DSP). Finite impulse response (FIR) and infinite impulse response (IIR) filters are implemented with and without neuromorphic computing in Vivado using Verilog HDL. The results suggest that neuromorphic computing can provide low-latency and synaptic plasticity thereby enabling continuous on-chip learning. Due to their parallel and event-driven nature, neuromorphic computing can reduce power consumption by eliminating von Neumann bottlenecks and improve efficiency, but at the cost of reduced numeric precision.
- Abstract(参考訳): 本稿では,ニューロモルフィック・コンピューティングの基礎,スパイキング・ニューラル・ネットワーク(SNN)とメムリスタを解析し,議論する。
ニューロモルフィックコンピューティングは、デジタル信号処理(DSP)のためのFPGA設計に適用される。
有限インパルス応答(FIR)と無限インパルス応答(IIR)フィルタは、Verilog HDLを用いてVivadoのニューロモルフィック・コンピューティングを用いて実装されている。
その結果,ニューロモルフィックコンピューティングは低レイテンシとシナプス可塑性を提供し,連続的なオンチップ学習を可能にすることが示唆された。
並列性と事象駆動性のため、ニューロモルフィックコンピューティングはフォン・ノイマンのボトルネックを排除し、効率を向上させることで消費電力を減らすことができるが、数値精度を下げるコストはかかる。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANAは、混合信号ニューロモルフィック回路の特性を考慮に入れたソフトウェアスパイクニューラルネットワークシミュレータである。
得られた結果が,ソフトウェアでトレーニングされたスパイクニューラルネットワークの動作を,かつてハードウェアにデプロイされた場合の信頼性の高い推定方法を示す。
論文 参考訳(メタデータ) (2024-09-23T11:16:46Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Neuroevolving Electronic Dynamical Networks [0.0]
ニューロ進化(Neuroevolution)は、自然選択によって人工ニューラルネットワークの性能を改良するために進化的アルゴリズムを適用する方法である。
連続時間リカレントニューラルネットワーク(CTRNN)の適合性評価は、時間と計算コストがかかる可能性がある。
フィールドプログラマブルゲートアレイ(FPGA)は、高性能で消費電力の少ないため、ますます人気が高まっている。
論文 参考訳(メタデータ) (2024-04-06T10:54:35Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence [2.6199663901387997]
インメモリコンピューティング 混合信号ニューロモルフィックアーキテクチャはエッジコンピューティングのセンサ処理への応用に期待できる超低消費電力のソリューションを提供する。
本稿では、FDSOI(Fully-Depleted Silicon on Insulator)統合プロセスの特徴を利用する混合信号アナログ/デジタル回路を提案する。
論文 参考訳(メタデータ) (2020-06-25T09:31:29Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
我々は, プレ・グポストシナプスのパートナーを常に切り替えることにより, 構造的可塑性を達成するための戦略を提案する。
我々はこのアルゴリズムをアナログニューロモルフィックシステムBrainScaleS-2に実装した。
ネットワークトポロジを最適化する能力を示し、簡単な教師付き学習シナリオで実装を評価した。
論文 参考訳(メタデータ) (2019-12-27T10:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。