論文の概要: Advanced Geometric Correction Algorithms for 3D Medical Reconstruction: Comparison of Computed Tomography and Macroscopic Imaging
- arxiv url: http://arxiv.org/abs/2602.00220v1
- Date: Fri, 30 Jan 2026 17:16:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 19:28:33.0655
- Title: Advanced Geometric Correction Algorithms for 3D Medical Reconstruction: Comparison of Computed Tomography and Macroscopic Imaging
- Title(参考訳): 3次元医用画像再構成のための高度な幾何補正アルゴリズム:CTとマクロ画像の比較
- Authors: Tomasz Les, Tomasz Markiewicz, Malgorzata Lorent, Miroslaw Dziekiewicz, Krzysztof Siwek,
- Abstract要約: 本稿では, マクロスライスから3次元腎解剖を再構築するためのハイブリッド2段階登録フレームワークを提案する。
これは、マクロ画像の典型的なデータスカシティと高歪みの課題に対処する。
提案手法は,光学的および写真的断面から再構成した他の軟部臓器に一般化する。
- 参考スコア(独自算出の注目度): 0.9395222766576343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a hybrid two-stage registration framework for reconstructing three-dimensional (3D) kidney anatomy from macroscopic slices, using CT-derived models as the geometric reference standard. The approach addresses the data-scarcity and high-distortion challenges typical of macroscopic imaging, where fully learning-based registration (e.g., VoxelMorph) often fails to generalize due to limited training diversity and large nonrigid deformations that exceed the capture range of unconstrained convolutional filters. In the proposed pipeline, the Optimal Cross-section Matching (OCM) algorithm first performs constrained global alignment: translation, rotation, and uniform scaling to establish anatomically consistent slice initialization. Next, a lightweight deep-learning refinement network, inspired by VoxelMorph, predicts residual local deformations between consecutive slices. The core novelty of this architecture lies in its hierarchical decomposition of the registration manifold. This hybrid OCM+DL design integrates explicit geometric priors with the flexible learning capacity of neural networks, ensuring stable optimization and plausible deformation fields even with few training examples. Experiments on an original dataset of 40 kidneys demonstrated better results compared to single-stage baselines. The pipeline maintains physical calibration via Hough-based grid detection and employs Bezier-based contour smoothing for robust meshing and volume estimation. Although validated on kidney data, the proposed framework generalizes to other soft-tissue organs reconstructed from optical or photographic cross-sections. By decoupling interpretable global optimization from data-efficient deep refinement, the method advances the precision, reproducibility, and anatomical realism of multimodal 3D reconstructions for surgical planning, morphological assessment, and medical education.
- Abstract(参考訳): 本稿では,3次元腎解剖を3次元スライスから再構成するためのハイブリッド2段階登録フレームワークについて,CTモデルを用いて紹介する。
この手法は、完全学習に基づく登録(例えばVoxelMorph)が、制限された訓練の多様性と、制約のない畳み込みフィルタの捕捉範囲を超える大きな非剛性変形のために、しばしば一般化に失敗するマクロ画像の典型的なデータスカシティと高歪みの課題に対処する。
提案したパイプラインにおいて、最適断面マッチング(OCM)アルゴリズムは、まず、解剖学的に一貫したスライス初期化を確立するために、翻訳、回転、均一スケーリングという制約付きグローバルアライメントを実行する。
次に、VoxelMorphにインスパイアされた軽量なディープラーニング改善ネットワークが、連続スライス間の残留局所変形を予測する。
このアーキテクチャの中核の新規性は、登録多様体の階層的な分解にある。
このハイブリッドOCM+DL設計は、明示的な幾何学的先行とニューラルネットワークの柔軟な学習能力を統合し、訓練例が少なくても安定した最適化と可塑性変形場を確保する。
40個の腎臓のオリジナルのデータセットを用いた実験では、単段階のベースラインよりも良い結果が得られた。
パイプラインはHoughベースのグリッド検出による物理的キャリブレーションを維持し、堅牢なメッシュリングとボリューム推定にBezierベースの輪郭スムーシングを使用している。
腎臓のデータに基づいて検証されるが、この枠組みは光学的または写真的断面から再構成された他の軟部臓器に一般化される。
データ効率の高い深部精錬から解釈可能な大域的最適化を分離することにより、手術計画、形態学的評価、医学教育のための多モード3D再構成の精度、再現性、解剖学的現実性を向上させる。
関連論文リスト
- Resolution-Independent Neural Operators for Multi-Rate Sparse-View CT [67.14700058302016]
深層学習手法は高忠実度再構成を実現するが、しばしば固定された取得設定に過度に適合する。
本稿では,連続関数空間に拡張したCT再構成フレームワークであるComputed Tomography Neural Operator (CTO)を提案する。
CTOは一貫性のあるマルチサンプリングレートとクロスレゾリューションのパフォーマンスを実現している。
論文 参考訳(メタデータ) (2025-12-13T08:31:46Z) - SparseFlex: High-Resolution and Arbitrary-Topology 3D Shape Modeling [79.56581753856452]
SparseFlexは、新しいスパース構造のアイソサーフェス表現で、レンダリング損失から最大10243ドルの解像度で、差別化可能なメッシュ再構築を可能にする。
SparseFlexは、高解像度で差別化可能なメッシュ再構成とレンダリングロスによる生成を可能にすることで、3D形状の表現とモデリングの最先端性を著しく向上させる。
論文 参考訳(メタデータ) (2025-03-27T17:46:42Z) - Explicit Differentiable Slicing and Global Deformation for Cardiac Mesh Reconstruction [8.730291904586656]
医用画像からの心臓解剖のメッシュ再構築は, 形状, 運動計測, 生体物理シミュレーションに有用である。
従来のボクセルベースのアプローチは、イメージの忠実さを損なう前処理と後処理に依存している。
そこで本稿では,メッシュのスライスからメッシュへの勾配バックプロパゲーションを可能にする,新しい識別可能なボキセル化とスライシング(DVS)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-03T17:19:31Z) - Abdominal organ segmentation via deep diffeomorphic mesh deformations [5.4173776411667935]
CTとMRIによる腹部臓器の分節は,手術計画とコンピュータ支援ナビゲーションシステムにとって必須の要件である。
肝, 腎, 膵, 脾の分節に対するテンプレートベースのメッシュ再構成法を応用した。
結果として得られたUNetFlowは4つの器官すべてによく当てはまり、新しいデータに基づいて簡単に微調整できる。
論文 参考訳(メタデータ) (2023-06-27T14:41:18Z) - A geometry-aware deep network for depth estimation in monocular
endoscopy [17.425158094539462]
提案手法は,異なるデータセットと臨床画像にまたがって広範囲に検証されている。
提案法の平均RMSE値は12.604(T1-L1)、9.930(T2-L2)、13.893(Colon)である。
論文 参考訳(メタデータ) (2023-04-20T11:59:32Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
本研究では,eulerの離散化スキームに基づく非定常ode(フロー方程式)の解法として,深層残留ニューラルネットワークを用いた。
複雑なトポロジー保存変換の下での3次元形状の多種多様な登録問題について述べる。
論文 参考訳(メタデータ) (2021-02-16T04:07:13Z) - A Deep-Learning Approach For Direct Whole-Heart Mesh Reconstruction [1.8047694351309207]
本研究では,ボリュームCTとMR画像データから心表面メッシュ全体を直接予測する深層学習に基づく新しい手法を提案する。
本手法は,高分解能,高品質の全心臓再建を実現できる有望な性能を示した。
論文 参考訳(メタデータ) (2021-02-16T00:39:43Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。