論文の概要: The Neurosymbolic Frontier of Nonuniform Ellipticity: Formalizing Sharp Schauder Theory via Topos-Theoretic Reasoning Models
- arxiv url: http://arxiv.org/abs/2602.10632v1
- Date: Wed, 11 Feb 2026 08:24:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-12 21:44:01.591898
- Title: The Neurosymbolic Frontier of Nonuniform Ellipticity: Formalizing Sharp Schauder Theory via Topos-Theoretic Reasoning Models
- Title(参考訳): 非一様楕円性のニューロシンボリックフロンティア:トポス理論推論モデルによるシャープシャウダー理論の定式化
- Authors: Suyash Mishra,
- Abstract要約: 非一様楕円正則理論とニューロシンボリック大推論モデル(LRM)の最近のブレークスルーを示す。
スライストポスにおける分類的コリミットとして推論過程をモデル化することにより、LEMが変分計算の「ダークサイド」を自律的にナビゲートする方法を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This white paper presents a critical synthesis of the recent breakthrough in nonuniformly elliptic regularity theory and the burgeoning field of neurosymbolic large reasoning models (LRMs). We explore the resolution of the long-standing sharp growth rate conjecture in Schauder theory, achieved by Cristiana De Filippis and Giuseppe Mingione, which identifies the exact threshold $q/p < 1 + α/n$ for gradient Hölder continuity. Central to this mathematical achievement is the ``ghost equation'' methodology, a sophisticated auxiliary derivation that bypasses the non-differentiability of classical Euler-Lagrange systems. We propose that the next era of mathematical discovery lies in the integration of these pure analytical constructs with LRMs grounded in topos theory and formal verification frameworks such as Safe and Typed Chain-of-Thought (PC-CoT). By modeling the reasoning process as a categorical colimit in a slice topos, we demonstrate how LRMs can autonomously navigate the ``Dark Side'' of the calculus of variations, providing machine-checkable proofs for regularity bounds in complex, multi-phase physical systems.
- Abstract(参考訳): この白書は、非一様楕円正則性理論の最近のブレークスルーと、ニューロシンボリック大推論モデル(LRMs)の急成長分野を批判的に合成する。
我々は、勾配ヘルダー連続性に対する正確なしきい値$q/p < 1 + α/n$を識別するクリスティアナ・デ・フィリピス(英語版)とジュゼッペ・ミンギオーネ(英語版)によって達成されたシャウダー理論における長期間にわたる急激な成長率予想の解決を探求する。
この数学的達成の中心は 'ghost equation' の方法論であり、古典的オイラー・ラグランジュ系の非微分性をバイパスする洗練された補助微分である。
数学的な発見の次の時代は、トポス理論や Safe や Typed Chain-of-Thought (PC-CoT) などの形式的検証フレームワークを基礎とした、これらの純粋な解析的構造と LRM を統合することである。
スライストポスにおける分類的コリミットとして推論過程をモデル化することにより、LEMが変分計算の 'Dark Side'' を自律的にナビゲートし、複雑な多相物理系における正則性境界のマシンチェック可能な証明を与える方法を示す。
関連論文リスト
- SIGMA: Scalable Spectral Insights for LLM Collapse [51.863164847253366]
SIGMA(Spectral Inequalities for Gram Matrix Analysis)は,モデル崩壊のための統一的なフレームワークである。
行列のスペクトル上の決定論的境界を導出するベンチマークを利用することで、SIGMAは表現空間の収縮を追跡するために数学的に基底化された計量を提供する。
我々は、SIGMAが状態への遷移を効果的に捉え、崩壊のメカニズムに関する理論的知見の両方を提供することを示した。
論文 参考訳(メタデータ) (2026-01-06T19:47:11Z) - Intrinsic-Metric Physics-Informed Neural Networks (IM-PINN) for Reaction-Diffusion Dynamics on Complex Riemannian Manifolds [0.0]
本研究は,本質的物理インフォームドニューラルネットワーク(IM-PINN)を紹介する。
メッシュのない幾何学的深層学習フレームワークであり、連続パラメトリック領域において偏微分方程式を直接解く。
このフレームワークは、進化する表面上の生物学的パターンの形成をシミュレートするための、メモリ効率が高く、解像度に依存しないパラダイムを提供する。
論文 参考訳(メタデータ) (2025-12-26T12:41:05Z) - A Theory of $θ$-Expectations [2.1756081703276]
我々は、ドライバーがポイントワイズ幾何学である微分方程式のクラスのためのフレームワークを開発する。
システムのトラクタビリティは、世界的なユニークかつグローバルな存在を前提としている。
ドライバー関数に対するリプシッツ最大値写像。
論文 参考訳(メタデータ) (2025-07-27T16:56:01Z) - Neural Expectation Operators [2.1756081703276]
本稿では,非線形予測によるあいまいさをモデル化するためのパラダイムであるtextbfMeasure Learningを紹介する。
我々はニューラル期待演算子を、ドライバがニューラルネットワークによってパラメータ化される後方微分方程式(BSDEs)の解として定義する。
本稿では,建築設計による凸性などの重要な公理特性の強化のための建設的手法を提案する。
論文 参考訳(メタデータ) (2025-07-13T06:19:28Z) - Transition of $α$-mixing in Random Iterations with Applications in Queuing Theory [0.0]
本研究では, 混合特性を外因性回帰器から結合論による応答へ伝達することを示す。
また,非定常環境下においても,ドリフトおよびマイノライズ条件のランダム環境におけるマルコフ連鎖について検討した。
論文 参考訳(メタデータ) (2024-10-07T14:13:37Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - Last-Iterate Convergence of Adaptive Riemannian Gradient Descent for Equilibrium Computation [52.73824786627612]
本稿では,テクスト幾何学的強単調ゲームに対する新たな収束結果を確立する。
我々のキーとなる結果は、RGDがテクスト幾何学的手法で最終定位線形収束を実現することを示しています。
全体として、ユークリッド設定を超えるゲームに対して、幾何学的に非依存な最終点収束解析を初めて提示する。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - A Dynamical System View of Langevin-Based Non-Convex Sampling [44.002384711340966]
非サンプリングは機械学習における重要な課題であり、ディープラーニングにおける非レート最適化の中心であり、その重要性を近似する。
既存の保証は通常、より望ましい最終段階の反復よりも平均距離のみを保持する。
我々は、理論システムからいくつかのツールを活用することにより、上記の問題を解消する新しいフレームワークを開発する。
論文 参考訳(メタデータ) (2022-10-25T09:43:36Z) - The Dynamics of Riemannian Robbins-Monro Algorithms [101.29301565229265]
本稿では,Robins と Monro のセミナル近似フレームワークを一般化し拡張するリーマンアルゴリズムの族を提案する。
ユークリッドのそれと比較すると、リーマンのアルゴリズムは多様体上の大域線型構造が欠如しているため、はるかに理解されていない。
ユークリッド・ロビンス=モンロスキームの既存の理論を反映し拡張するほぼ確実な収束結果の一般的なテンプレートを提供する。
論文 参考訳(メタデータ) (2022-06-14T12:30:11Z) - Proof of the Contiguity Conjecture and Lognormal Limit for the Symmetric
Perceptron [21.356438315715888]
我々は、ニューラルネットワークの単純なモデルである対称バイナリパーセプトロンモデルを検討する。
このモデルのためのいくつかの予想を確立する。
この証明手法は,小さなグラフ条件付け手法の密な反部分に依存する。
論文 参考訳(メタデータ) (2021-02-25T18:39:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。