論文の概要: Neural Expectation Operators
- arxiv url: http://arxiv.org/abs/2507.10607v1
- Date: Sun, 13 Jul 2025 06:19:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.773444
- Title: Neural Expectation Operators
- Title(参考訳): ニューラル期待演算子
- Authors: Qian Qi,
- Abstract要約: 本稿では,非線形予測によるあいまいさをモデル化するためのパラダイムであるtextbfMeasure Learningを紹介する。
我々はニューラル期待演算子を、ドライバがニューラルネットワークによってパラメータ化される後方微分方程式(BSDEs)の解として定義する。
本稿では,建築設計による凸性などの重要な公理特性の強化のための建設的手法を提案する。
- 参考スコア(独自算出の注目度): 2.1756081703276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces \textbf{Measure Learning}, a paradigm for modeling ambiguity via non-linear expectations. We define Neural Expectation Operators as solutions to Backward Stochastic Differential Equations (BSDEs) whose drivers are parameterized by neural networks. The main mathematical contribution is a rigorous well-posedness theorem for BSDEs whose drivers satisfy a local Lipschitz condition in the state variable $y$ and quadratic growth in its martingale component $z$. This result circumvents the classical global Lipschitz assumption, is applicable to common neural network architectures (e.g., with ReLU activations), and holds for exponentially integrable terminal data, which is the sharp condition for this setting. Our primary innovation is to build a constructive bridge between the abstract, and often restrictive, assumptions of the deep theory of quadratic BSDEs and the world of machine learning, demonstrating that these conditions can be met by concrete, verifiable neural network designs. We provide constructive methods for enforcing key axiomatic properties, such as convexity, by architectural design. The theory is extended to the analysis of fully coupled Forward-Backward SDE systems and to the asymptotic analysis of large interacting particle systems, for which we establish both a Law of Large Numbers (propagation of chaos) and a Central Limit Theorem. This work provides the foundational mathematical framework for data-driven modeling under ambiguity.
- Abstract(参考訳): 本稿では,非線形予測によるあいまいさをモデル化するためのパラダイムである「textbf{Measure Learning}」を紹介する。
我々はニューラル期待演算子を,ニューラルネットワークによってパラメータ化される後方確率微分方程式(BSDEs)の解として定義する。
主な数学的貢献は BSDEs に対する厳密な well-posedness theorem であり、ドライバは状態変数 $y$ の局所リプシッツ条件を満たすことと、マーチンゲール成分 $z$ の二次的な成長を満足する。
この結果は、古典的グローバルリプシッツの仮定を回避し、共通のニューラルネットワークアーキテクチャ(例えば、ReLUアクティベーションを含む)に適用でき、指数関数的に積分可能な端末データを保持する。
我々の主要な革新は、抽象的でしばしば制限的な2次BSDEの深い理論と機械学習の世界の間に構築的なブリッジを構築することであり、これらの条件が具体的で検証可能なニューラルネットワーク設計によって満たされることを実証することである。
本稿では,建築設計による凸性などの重要な公理特性の強化のための建設的手法を提案する。
この理論は、完全に結合したフォワード・バックワードSDE系の解析や、大きな相互作用する粒子系の漸近解析にまで拡張され、大数の法則(カオスの伝播)と中心極限定理の両方を確立する。
この研究は曖昧さの下でのデータ駆動モデリングの基礎となる数学的枠組みを提供する。
関連論文リスト
- Neural Hamiltonian Operator [2.1756081703276]
従来の動的プログラミングの代替としてポントリャーギンの最大原理(PMP)がある。
そこで本稿では,textbfNeural Hamiltonian Operator (NHO) の定義により,このような問題をディープラーニングで解くための形式的枠組みを提案する。
PMPによって規定される一貫性条件を強制するために、基礎となるネットワークをトレーニングすることで、最適なNHOを見つける方法を示す。
論文 参考訳(メタデータ) (2025-07-02T02:56:49Z) - Universal Approximation Theorem for Deep Q-Learning via FBSDE System [2.1756081703276]
本稿では,Deep Q-Networks (DQN) のクラスに対する普遍近似理論を確立する。
関数空間上で作用するニューラル演算子として考えられたディープ残留ネットワークの層がベルマン作用素の作用を近似できることを示す。
論文 参考訳(メタデータ) (2025-05-09T13:11:55Z) - Revolutionizing Fractional Calculus with Neural Networks: Voronovskaya-Damasclin Theory for Next-Generation AI Systems [0.0]
この研究は、対称性と双曲型摂動関数によって活性化されるニューラルネットワーク演算子に対する厳密な収束率を導入する。
古典近似理論をカプトー微分を通じて分数計算に拡張する。
論文 参考訳(メタデータ) (2025-04-01T21:03:00Z) - From Theory to Application: A Practical Introduction to Neural Operators in Scientific Computing [0.0]
この研究は、Deep Operator Networks (DeepONet) や主成分分析に基づくニューラルネットワーク (PCANet) などの基礎モデルをカバーする。
レビューでは、ベイズ推論問題の代理として神経オペレーターを適用し、精度を維持しながら後部推論を加速させる効果を示した。
残差ベースのエラー修正やマルチレベルトレーニングなど、これらの問題に対処する新たな戦略を概説する。
論文 参考訳(メタデータ) (2025-03-07T17:25:25Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [60.58067866537143]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Distribution learning via neural differential equations: a nonparametric
statistical perspective [1.4436965372953483]
この研究は、確率変換によって訓練されたODEモデルによる分布学習のための最初の一般統計収束解析を確立する。
後者はクラス $mathcal F$ の$C1$-metric entropy で定量化できることを示す。
次に、この一般フレームワークを$Ck$-smoothターゲット密度の設定に適用し、関連する2つの速度場クラスに対する最小最適収束率を$mathcal F$:$Ck$関数とニューラルネットワークに設定する。
論文 参考訳(メタデータ) (2023-09-03T00:21:37Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。