論文の概要: Geometric separation and constructive universal approximation with two hidden layers
- arxiv url: http://arxiv.org/abs/2602.12482v1
- Date: Thu, 12 Feb 2026 23:46:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-16 23:37:53.790041
- Title: Geometric separation and constructive universal approximation with two hidden layers
- Title(参考訳): 2つの隠蔽層を用いた幾何学的分離と構成的普遍近似
- Authors: Chanyoung Sung,
- Abstract要約: 2つの隠蔽層を持つネットワークとシグモダル活性化(厳密に単調な有界連続)またはReLU活性化が任意の実数値連続関数を近似可能であることを示す。
有限$K$の場合、構成はシャープな深さ2(単一の隠蔽層)近似結果を単純化して得られる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We give a geometric construction of neural networks that separate disjoint compact subsets of $\Bbb R^n$, and use it to obtain a constructive universal approximation theorem. Specifically, we show that networks with two hidden layers and either a sigmoidal activation (i.e., strictly monotone bounded continuous) or the ReLU activation can approximate any real-valued continuous function on an arbitrary compact set $K\subset\Bbb R^n$ to any prescribed accuracy in the uniform norm. For finite $K$, the construction simplifies and yields a sharp depth-2 (single hidden layer) approximation result.
- Abstract(参考訳): 我々は、$\Bbb R^n$の非連結なコンパクト部分集合を分離するニューラルネットワークの幾何学的構成を与え、それを用いて構成的普遍近似定理を得る。
具体的には、任意のコンパクト集合 $K\subset\Bbb R^n$ 上の任意の実数値連続函数を、一様ノルムの任意の所定の精度で近似することができる。
有限$K$の場合、構成はシャープな深さ2(単一の隠蔽層)近似結果を単純化して得られる。
関連論文リスト
- Constructive counterexamples to the additivity of minimum output Rényi entropy of quantum channels for all $p>1$ [0.29465623430708904]
すべての$p>1$に対して、厳密な部分付加最小出力 R'enyi エントロピーを持つ明示的な量子チャネルを示す。
この例は、高幾何測度の絡み合いを持つ線型部分空間の明示的な構成によって提供される。
論文 参考訳(メタデータ) (2025-10-08T21:02:55Z) - Constructive Universal Approximation and Finite Sample Memorization by Narrow Deep ReLU Networks [0.0]
我々は$N$の異なる点を持つデータセットが$mathbbRd$と$M$の出力クラスを正確に分類できることを示した。
また、任意の有界領域に対して$Lp(Omega; mathbbRm)$の普遍近似定理も証明する。
我々の結果は、深層ニューラルネットワークにおける制御性、表現性、およびトレーニングのダイナミクスを接続する統一的で解釈可能なフレームワークを提供する。
論文 参考訳(メタデータ) (2024-09-10T14:31:21Z) - Deep Ridgelet Transform and Unified Universality Theorem for Deep and Shallow Joint-Group-Equivariant Machines [15.67299102925013]
共同群同変特徴写像を備えた学習機械に対する構成的普遍近似定理を提案する。
我々の主定理はまた、浅いネットワークと深いネットワークの両方に対する普遍近似定理を統一する。
論文 参考訳(メタデータ) (2024-05-22T14:25:02Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
近年の研究では、再生カーネルヒルベルト空間(RKHS)がニューラルネットワークによる関数のモデル化に適した空間ではないことが示されている。
本稿では,有界ノルムを持つオーバーパラメータ化された2層ニューラルネットワークに適した関数空間について検討する。
論文 参考訳(メタデータ) (2024-04-29T15:04:07Z) - Polynomial Width is Sufficient for Set Representation with
High-dimensional Features [69.65698500919869]
DeepSetsは集合表現のための最も広く使われているニューラルネットワークアーキテクチャである。
a) 線形 + パワーアクティベーション (LP) と (b) 線形 + 指数的アクティベーション (LE) の2つの集合要素埋め込み層を示す。
論文 参考訳(メタデータ) (2023-07-08T16:00:59Z) - The Sample Complexity of One-Hidden-Layer Neural Networks [57.6421258363243]
本研究では,スカラー値を持つ一層ネットワークのクラスとユークリッドノルムで有界な入力について検討する。
隠蔽層重み行列のスペクトルノルムの制御は、一様収束を保証するには不十分であることを示す。
スペクトルノルム制御が十分であることを示す2つの重要な設定を解析する。
論文 参考訳(メタデータ) (2022-02-13T07:12:02Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - Quantitative Rates and Fundamental Obstructions to Non-Euclidean
Universal Approximation with Deep Narrow Feed-Forward Networks [3.8073142980733]
我々は,「深い幾何学的フィードフォワードニューラルネットワーク」に必要な狭い層数を定量化する。
グローバルとローカルの両方のユニバーサル近似保証は、null-homotopic関数を近似する場合にのみ一致することが分かりました。
論文 参考訳(メタデータ) (2021-01-13T23:29:40Z) - Universal Approximation Property of Neural Ordinary Differential
Equations [19.861764482790544]
我々は NODE が一定の条件下で連続写像に対して$Lp$-universal approximator を形成することを示す。
また、それらのより強い近似特性、すなわち、大きな微分同相類を近似する$sup$-ユニバーサリティを示す。
論文 参考訳(メタデータ) (2020-12-04T05:53:21Z) - Minimum Width for Universal Approximation [91.02689252671291]
我々は、$Lp$関数の普遍近似に必要な最小幅がちょうど$maxd_x+1,d_y$であることを証明する。
また、同じ結論がReLUと一様近似に当てはまるのではなく、追加のしきい値アクティベーション関数で成り立つことを証明している。
論文 参考訳(メタデータ) (2020-06-16T01:24:21Z) - Revealing the Structure of Deep Neural Networks via Convex Duality [70.15611146583068]
我々は,正規化深層ニューラルネットワーク(DNN)について検討し,隠蔽層の構造を特徴付ける凸解析フレームワークを導入する。
正規正規化学習問題に対する最適隠蔽層重みの集合が凸集合の極点として明確に見出されることを示す。
ホワイトデータを持つ深部ReLUネットワークに同じ特徴を応用し、同じ重み付けが成り立つことを示す。
論文 参考訳(メタデータ) (2020-02-22T21:13:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。