論文の概要: FUTON: Fourier Tensor Network for Implicit Neural Representations
- arxiv url: http://arxiv.org/abs/2602.13414v1
- Date: Fri, 13 Feb 2026 19:31:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-17 14:17:28.022298
- Title: FUTON: Fourier Tensor Network for Implicit Neural Representations
- Title(参考訳): FUTON: 入射神経表現のためのフーリエテンソルネットワーク
- Authors: Pooya Ashtari, Pourya Behmandpoor, Nikos Deligiannis, Aleksandra Pizurica,
- Abstract要約: 入射神経表現(INR)はシグナルを符号化する強力なツールとして現れてきたが、支配的な設計はしばしば収束が遅く、ノイズに過度に適応し、外挿が不十分である。
低ランクテンソル分解により係数がパラメータ化される一般化フーリエ級数として信号をモデル化するFUTONを導入する。
- 参考スコア(独自算出の注目度): 56.48739018255443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Implicit neural representations (INRs) have emerged as powerful tools for encoding signals, yet dominant MLP-based designs often suffer from slow convergence, overfitting to noise, and poor extrapolation. We introduce FUTON (Fourier Tensor Network), which models signals as generalized Fourier series whose coefficients are parameterized by a low-rank tensor decomposition. FUTON implicitly expresses signals as weighted combinations of orthonormal, separable basis functions, combining complementary inductive biases: Fourier bases capture smoothness and periodicity, while the low-rank parameterization enforces low-dimensional spectral structure. We provide theoretical guarantees through a universal approximation theorem and derive an inference algorithm with complexity linear in the spectral resolution and the input dimension. On image and volume representation, FUTON consistently outperforms state-of-the-art MLP-based INRs while training 2--5$\times$ faster. On inverse problems such as image denoising and super-resolution, FUTON generalizes better and converges faster.
- Abstract(参考訳): 入射神経表現(INR)はシグナルを符号化する強力なツールとして登場したが、支配的なMLPベースの設計は、しばしば収束が遅く、ノイズに過度に適応し、外挿が不十分である。
低ランクテンソル分解により係数がパラメータ化される一般化フーリエ級数として信号をモデル化するFUTON(Fourier Tensor Network)を導入する。
フーリエ基底は滑らかさと周期性を捉え、低ランクのパラメータ化は低次元のスペクトル構造を強制する。
我々は、普遍近似定理を通じて理論的保証を提供し、スペクトル分解能と入力次元において複素線型な推論アルゴリズムを導出する。
画像とボリュームの表現では、FUTONは2--5$\times$を高速にトレーニングしながら、最先端のMLPベースのINRよりも一貫して優れています。
画像のデノイングや超解像といった逆問題に関して、FUTONはより良く一般化し、より高速に収束する。
関連論文リスト
- When Bayesian Tensor Completion Meets Multioutput Gaussian Processes: Functional Universality and Rank Learning [53.17227599983122]
関数テンソル分解は実数値インデックスを用いて多次元データを解析することができる。
そこで本研究では,Right-Revealing Functional Low-rank tensor completion (RR-F)法を提案する。
連続多次元信号に対するモデルの普遍近似特性を確立する。
論文 参考訳(メタデータ) (2025-12-25T03:15:52Z) - Iterative Training of Physics-Informed Neural Networks with Fourier-enhanced Features [7.1865646765394215]
スペクトルバイアスは、ニューラルネットワークがまず低周波の特徴を学習する傾向にあるが、これはよく知られた問題である。
本稿では,Fourier-enhanced機能付きPINNの反復学習アルゴリズムであるIFeF-PINNを提案する。
論文 参考訳(メタデータ) (2025-10-22T09:17:37Z) - Low-Rank Tensor Recovery via Variational Schatten-p Quasi-Norm and Jacobian Regularization [49.85875869048434]
暗黙的神経表現のためのニューラルネットワークによりパラメータ化されたCPベースの低ランクテンソル関数を提案する。
本研究では、スペーサーCP分解を実現するために、冗長なランク1成分に変分Schatten-p quasi-normを導入する。
滑らか性のために、ヤコビアンとハッチンソンのトレース推定器のスペクトルノルムに基づく正規化項を提案する。
論文 参考訳(メタデータ) (2025-06-27T11:23:10Z) - Robustifying Fourier Features Embeddings for Implicit Neural Representations [25.725097757343367]
Inlicit Neural Representation (INR) は、目標関数の対応する値に座標をマッピングすることで、連続関数を表現するためにニューラルネットワークを使用する。
INRは、様々な周波数を含むシーンを扱う際に、スペクトルバイアスとして知られる課題に直面している。
本稿では,多層パーセプトロン (MLP) を添加剤なしで使用することを提案する。
論文 参考訳(メタデータ) (2025-02-08T07:43:37Z) - STAF: Sinusoidal Trainable Activation Functions for Implicit Neural Representation [7.2888019138115245]
Inlicit Neural Representations (INR) は、連続的な信号をモデリングするための強力なフレームワークとして登場した。
ReLUベースのネットワークのスペクトルバイアスは、十分に確立された制限であり、ターゲット信号の微細な詳細を捕捉する能力を制限する。
Sinusoidal Trainable Function Activation (STAF)について紹介する。
STAFは本質的に周波数成分を変調し、自己適応型スペクトル学習を可能にする。
論文 参考訳(メタデータ) (2025-02-02T18:29:33Z) - Implicit Neural Representations and the Algebra of Complex Wavelets [36.311212480600794]
Inlicit Neural representations (INRs) はユークリッド領域におけるシグナルの表現法として有用である。
ユークリッド空間上の多層パーセプトロン(MLP)として画像をパラメータ化することにより、INRは通常の離散表現では明らかでない信号の結合やスペクトルの特徴を効果的に表現する。
論文 参考訳(メタデータ) (2023-10-01T02:01:28Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
Incrmental Fourier Neural Operator (iFNO)を導入し、モデルが使用する周波数モードの数を徐々に増加させる。
iFNOは、各種データセット間の一般化性能を維持したり改善したりしながら、トレーニング時間を短縮する。
提案手法は,既存のフーリエニューラル演算子に比べて20%少ない周波数モードを用いて,10%低いテスト誤差を示すとともに,30%高速なトレーニングを実現する。
論文 参考訳(メタデータ) (2022-11-28T09:57:15Z) - Multi-Head ReLU Implicit Neural Representation Networks [3.04585143845864]
暗黙的神経表現(INR)のための新しいマルチヘッド多層パーセプトロン(MLP)構造
本稿では,提案モデルが従来のReLUネットワークの特別なバイアスに悩まされず,優れた性能を有することを示す。
論文 参考訳(メタデータ) (2021-10-07T13:27:35Z) - Modulated Periodic Activations for Generalizable Local Functional
Representations [113.64179351957888]
我々は,複数のインスタンスに一般化し,最先端の忠実性を実現する新しい表現を提案する。
提案手法は,画像,映像,形状の汎用的な機能表現を生成し,単一信号に最適化された先行処理よりも高い再構成品質を実現する。
論文 参考訳(メタデータ) (2021-04-08T17:59:04Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
フーリエ周波数領域における符号関数の勾配を正弦関数の組み合わせを用いて推定し,BNNの訓練を行う。
いくつかのベンチマークデータセットとニューラルネットワークの実験により、この手法で学習したバイナリネットワークが最先端の精度を達成することが示されている。
論文 参考訳(メタデータ) (2021-03-01T08:25:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。