論文の概要: Parameter-Minimal Neural DE Solvers via Horner Polynomials
- arxiv url: http://arxiv.org/abs/2602.14737v1
- Date: Mon, 16 Feb 2026 13:29:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-17 16:22:50.432688
- Title: Parameter-Minimal Neural DE Solvers via Horner Polynomials
- Title(参考訳): ホーナー多項式によるパラメータ最小分解器
- Authors: T. Matulić, D. Seršić,
- Abstract要約: 本稿では,Horner-factorized Neural Networkに仮説クラスを限定することにより,微分方程式を解くためのパラメータ最小アーキテクチャを提案する。
我々は,Hornerネットワークが,同じトレーニング設定下において,パラメータを十進数あるいは正接数ベースラインと正確に一致していることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a parameter-minimal neural architecture for solving differential equations by restricting the hypothesis class to Horner-factorized polynomials, yielding an implicit, differentiable trial solution with only a small set of learnable coefficients. Initial conditions are enforced exactly by construction by fixing the low-order polynomial degrees of freedom, so training focuses solely on matching the differential-equation residual at collocation points. To reduce approximation error without abandoning the low-parameter regime, we introduce a piecewise ("spline-like") extension that trains multiple small Horner models on subintervals while enforcing continuity (and first-derivative continuity) at segment boundaries. On illustrative ODE benchmarks and a heat-equation example, Horner networks with tens (or fewer) parameters accurately match the solution and its derivatives and outperform small MLP and sinusoidal-representation baselines under the same training settings, demonstrating a practical accuracy-parameter trade-off for resource-efficient scientific modeling.
- Abstract(参考訳): 本稿では,Horner-factorized polynomials に仮説クラスを限定し,学習可能係数の少ない暗黙的,微分可能な試行解を求めることにより,微分方程式を解くためのパラメータ最小ニューラルネットワークを提案する。
初期条件は、低次多項式次数の自由度を固定することによって、正確に構成によって強制されるので、訓練は、コロケーション点における微分方程式残差のマッチングにのみ焦点をあてる。
低パラメータ状態を捨てることなく近似誤差を低減するために,セグメント境界における連続性(および第1微分連続性)を強制しながら,サブインターバル上で複数の小さなホーナーモデルを訓練する「スプライン様」拡張を導入する。
イラストラティブODEベンチマークと熱方程式の例では、数十(またはそれ以下)のパラメータを持つホーナーネットワークは、ソリューションとそのデリバティブと正確に一致し、同じトレーニング設定下で小さなMLPと正弦波表現ベースラインを上回り、資源効率の科学的モデリングのための実用的な精度パラメータトレードオフを示す。
関連論文リスト
- Physics-Informed Chebyshev Polynomial Neural Operator for Parametric Partial Differential Equations [17.758049557300826]
物理インフォームドチェビシェフ多言語ニューラル演算子(CPNO)について紹介する。
CPNOは不安定な単項展開を数値的に安定なチェビシェフスペクトルベースで置き換える。
ベンチマークパラメタライズドPDEの実験では、CPNOはより優れた精度、より高速な収束、ハイパーパラメータの堅牢性の向上を実現している。
論文 参考訳(メタデータ) (2026-02-02T07:19:56Z) - DInf-Grid: A Neural Differential Equation Solver with Differentiable Feature Grids [73.28614344779076]
我々は、微分方程式(DE)を効率的に解くための微分可能グリッドベース表現を提案する。
その結果,座標法よりも5~20倍の高速化を実現し,差分方程式を数秒または数分で解き,精度とコンパクト性を維持した。
論文 参考訳(メタデータ) (2026-01-15T18:59:57Z) - Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts [64.34482582690927]
事前学習したスコアベースモデルから得られた熱処理, 幾何平均, 製品分布の配列から, 効率的かつ原理的に抽出する方法を提供する。
本稿では,サンプリング品質を向上させるために,推論時間スケーリングを利用する逐次モンテカルロ(SMC)再サンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-03-04T17:46:51Z) - A New Formulation of Lipschitz Constrained With Functional Gradient Learning for GANs [52.55025869932486]
本稿では,大規模データセット上でGAN(Generative Adversarial Networks)のトレーニングを行うための有望な代替手法を提案する。
本稿では,GANの学習を安定させるために,Lipschitz-Constrained Functional Gradient GANs Learning (Li-CFG)法を提案する。
判別器勾配のノルムを増大させることにより、潜在ベクトルの近傍サイズを小さくすることができることを示す。
論文 参考訳(メタデータ) (2025-01-20T02:48:07Z) - Physics-informed reduced order model with conditional neural fields [4.5355909674008865]
本研究では、パラメータ化偏微分方程式(PDE)の解を近似するために、低次モデリング(CNF-ROM)フレームワークのための条件付きニューラルネットワークを提案する。
このアプローチは、潜伏状態からPDEソリューションを再構成するデコーダと、時間とともに潜伏ダイナミクスをモデル化するためのパラメトリックニューラルネットワークODEを組み合わせる。
論文 参考訳(メタデータ) (2024-12-06T18:04:33Z) - Sparse Bayesian Learning for Complex-Valued Rational Approximations [0.03392423750246091]
サロゲートモデルは、エンジニアリングタスクの計算負担を軽減するために使用される。
これらのモデルは入力パラメータに強い非線形依存を示す。
合理的近似にスパース学習アプローチを適用する。
論文 参考訳(メタデータ) (2022-06-06T12:06:13Z) - A Deep Learning approach to Reduced Order Modelling of Parameter
Dependent Partial Differential Equations [0.2148535041822524]
パラメーター対解写像の効率的な近似法として,Deep Neural Networks に基づく構築的アプローチを開発した。
特に, パラメタライズド・アドベクション拡散PDEについて検討し, 強輸送場の存在下で方法論を検証した。
論文 参考訳(メタデータ) (2021-03-10T17:01:42Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - On the Estimation of Derivatives Using Plug-in Kernel Ridge Regression
Estimators [4.392844455327199]
非パラメトリック回帰における単純なプラグインカーネルリッジ回帰(KRR)推定器を提案する。
我々は,提案した推定器の挙動を統一的に研究するために,非漸近解析を行う。
提案した推定器は、導関数の任意の順序に対するチューニングパラメータを同じ選択で最適収束率を達成する。
論文 参考訳(メタデータ) (2020-06-02T02:32:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。