論文の概要: DInf-Grid: A Neural Differential Equation Solver with Differentiable Feature Grids
- arxiv url: http://arxiv.org/abs/2601.10715v1
- Date: Thu, 15 Jan 2026 18:59:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-16 19:43:19.293567
- Title: DInf-Grid: A Neural Differential Equation Solver with Differentiable Feature Grids
- Title(参考訳): DInf-Grid: 特徴格子を微分可能なニューラル微分方程式解法
- Authors: Navami Kairanda, Shanthika Naik, Marc Habermann, Avinash Sharma, Christian Theobalt, Vladislav Golyanik,
- Abstract要約: 我々は、微分方程式(DE)を効率的に解くための微分可能グリッドベース表現を提案する。
その結果,座標法よりも5~20倍の高速化を実現し,差分方程式を数秒または数分で解き,精度とコンパクト性を維持した。
- 参考スコア(独自算出の注目度): 73.28614344779076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel differentiable grid-based representation for efficiently solving differential equations (DEs). Widely used architectures for neural solvers, such as sinusoidal neural networks, are coordinate-based MLPs that are both computationally intensive and slow to train. Although grid-based alternatives for implicit representations (e.g., Instant-NGP and K-Planes) train faster by exploiting signal structure, their reliance on linear interpolation restricts their ability to compute higher-order derivatives, rendering them unsuitable for solving DEs. Our approach overcomes these limitations by combining the efficiency of feature grids with radial basis function interpolation, which is infinitely differentiable. To effectively capture high-frequency solutions and enable stable and faster computation of global gradients, we introduce a multi-resolution decomposition with co-located grids. Our proposed representation, DInf-Grid, is trained implicitly using the differential equations as loss functions, enabling accurate modelling of physical fields. We validate DInf-Grid on a variety of tasks, including the Poisson equation for image reconstruction, the Helmholtz equation for wave fields, and the Kirchhoff-Love boundary value problem for cloth simulation. Our results demonstrate a 5-20x speed-up over coordinate-based MLP-based methods, solving differential equations in seconds or minutes while maintaining comparable accuracy and compactness.
- Abstract(参考訳): 本稿では、微分方程式(DE)を効率的に解くための、新しい微分可能なグリッドベース表現を提案する。
正弦波ニューラルネットワークのようなニューラルネットワークのための広く使われているアーキテクチャは、計算集約的で訓練に時間がかかる座標ベースのMLPである。
暗示表現のグリッドベースの代替(例えば Instant-NGP や K-Planes など)は信号構造を利用してより高速に訓練するが、線形補間に依存しているため高階微分の計算能力は制限され、DESの解法には適さない。
提案手法は,特徴格子の効率性と,無限に微分可能な放射基底関数補間とを組み合わせることで,これらの制限を克服する。
高速な解を効果的に捕捉し, グローバル勾配の安定かつ高速な計算を可能にするために, コロケーショングリッドを用いた多分解能分解を導入する。
提案した表現であるDInf-Gridは、微分方程式を損失関数として暗黙的に訓練し、物理場の正確なモデリングを可能にする。
我々は、画像再構成のためのポアソン方程式、波動場のためのヘルムホルツ方程式、布のシミュレーションのためのキルヒホフ・ローブ境界値問題など、様々なタスクについてDInf-Gridを検証する。
その結果,座標に基づくMLP法よりも5~20倍の高速化を実現し,差分方程式を数秒または数分で解き,精度とコンパクト性を維持した。
関連論文リスト
- Self-Supervised Coarsening of Unstructured Grid with Automatic Differentiation [55.88862563823878]
本研究では,微分可能物理の概念に基づいて,非構造格子を階層化するアルゴリズムを提案する。
多孔質媒質中のわずかに圧縮可能な流体流を制御した線形方程式と波動方程式の2つのPDE上でのアルゴリズムの性能を示す。
その結果,検討したシナリオでは,関心点におけるモデル変数のダイナミクスを保ちながら,格子点数を最大10倍に削減した。
論文 参考訳(メタデータ) (2025-07-24T11:02:13Z) - Enabling Automatic Differentiation with Mollified Graph Neural Operators [73.52999622724101]
本稿では,自動微分と任意のジオメトリの正確な勾配を求める最初の手法であるモリファイドグラフニューラル演算子(m$GNO)を提案する。
正規格子上のPDEの例では、$m$GNOとオートグレードの組み合わせにより、L2相対データの誤差は有限差に比べて20倍減少した。
また、物理損失のみを使用し、有限差分に必要な分解能よりもはるかに低い精度で、非構造化点雲上のPDEをシームレスに解くことができる。
論文 参考訳(メタデータ) (2025-04-11T06:16:30Z) - Learning Subgrid-scale Models with Neural Ordinary Differential
Equations [0.39160947065896795]
偏微分方程式(PDE)をシミュレートする際のサブグリッドスケールモデル学習のための新しい手法を提案する。
このアプローチでは、ニューラルネットワークは粗大から細小のグリッドマップを学習するために使用され、これはサブグリッドスケールのパラメータ化と見なすことができる。
提案手法はNODEの利点を継承し,サブグリッドスケールのパラメータ化,近似結合演算子,低次解法の効率向上に利用することができる。
論文 参考訳(メタデータ) (2022-12-20T02:45:09Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z) - Unsupervised Reservoir Computing for Solving Ordinary Differential
Equations [1.6371837018687636]
通常の微分方程式(ODE)を満たす近似解を発見することができるエコー状態のリカレントニューラルネットワーク
ベイジアン最適化を用いて高次元ハイパーパラメータ空間における最適集合を効率よく発見し、1つの集合がロバストであり、異なる初期条件と時間範囲のODEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-08-25T18:16:42Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - FiniteNet: A Fully Convolutional LSTM Network Architecture for
Time-Dependent Partial Differential Equations [0.0]
我々は、PDEのダイナミクスを利用するために、完全に畳み込みLSTMネットワークを使用する。
ベースラインアルゴリズムと比較して,ネットワークの誤差を2~3倍に削減できることを示す。
論文 参考訳(メタデータ) (2020-02-07T21:18:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。